Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/14120
Title: | Identifying factors controlling cellular uptake of gold nanoparticles by machine learning | Authors: | Bilgi, Eyüp Winkler, David A. Öksel Karakuş, Ceyda |
Keywords: | Machine learning gold nanoparticles cellular uptake ICP medical applications Dendritic Cells Particle-Size Surface Shape Prediction Toxicity Delivery Nano |
Publisher: | TAYLOR & FRANCIS LTD | Abstract: | There is strong interest to improve the therapeutic potential of gold nanoparticles (GNPs) while ensuring their safe development. The utility of GNPs in medicine requires a molecular-level understanding of how GNPs interact with biological systems. Despite considerable research efforts devoted to monitoring the internalisation of GNPs, there is still insufficient understanding of the factors responsible for the variability in GNP uptake in different cell types. Data-driven models are useful for identifying the sources of this variability. Here, we trained multiple machine learning models on 2077 data points for 193 individual nanoparticles from 59 independent studies to predict cellular uptake level of GNPs and compared different algorithms for their efficacies of prediction. The five ensemble learners (Xgboost, random forest, bootstrap aggregation, gradient boosting, light gradient boosting machine) made the best predictions of GNP uptake, accounting for 80-90% of the variance in the test data. The models identified particle size, zeta potential, GNP concentration and exposure duration as the most important drivers of cellular uptake. We expect this proof-of-concept study will foster the more effective use of accumulated cellular uptake data for GNPs and minimise any methodological bias in individual studies that may lead to under- or over-estimation of cellular internalisation rates. | URI: | https://doi.org/10.1080/1061186X.2023.2288995 https://hdl.handle.net/11147/14120 |
ISSN: | 1061-186X 1029-2330 |
Appears in Collections: | PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
SCOPUSTM
Citations
1
checked on Nov 15, 2024
WEB OF SCIENCETM
Citations
1
checked on Nov 9, 2024
Page view(s)
144
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.