Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/14110
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKababulut, Fevzi Yasin-
dc.contributor.authorKuntalp, Damla Gurkan-
dc.contributor.authorDüzyel, Okan-
dc.contributor.authorÖzcan, Nermin-
dc.contributor.authorKuntalp, Mehmet-
dc.date.accessioned2024-01-06T07:21:21Z-
dc.date.available2024-01-06T07:21:21Z-
dc.date.issued2023-
dc.identifier.issn2075-4418-
dc.identifier.urihttps://doi.org/10.3390/diagnostics13233558-
dc.identifier.urihttps://hdl.handle.net/11147/14110-
dc.description.abstractThe aim of this study is to propose a new feature selection method based on the class-based contribution of Shapley values. For this purpose, a clinical decision support system was developed to assist doctors in their diagnosis of lung diseases from lung sounds. The developed systems, which are based on the Decision Tree Algorithm (DTA), create a classification for five different cases: healthy and disease (URTI, COPD, Pneumonia, and Bronchiolitis) states. The most important reason for using a Decision Tree Classifier instead of other high-performance classifiers such as CNN and RNN is that the class contributions of Shapley values can be seen with this classifier. The systems developed consist of either a single DTA classifier or five parallel DTA classifiers each of which is optimized to make a binary classification such as healthy vs. others, COPD vs. Others, etc. Feature sets based on Power Spectral Density (PSD), Mel Frequency Cepstral Coefficients (MFCC), and statistical characteristics extracted from lung sound recordings were used in these classifications. The results indicate that employing features selected based on the class-based contribution of Shapley values, along with utilizing an ensemble (parallel) system, leads to improved classification performance compared to performances using either raw features alone or traditional use of Shapley values.en_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofDiagnosticsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectdecision treeen_US
dc.subjectShapley valueen_US
dc.subjectlung diseasesen_US
dc.subjectaudio classificationen_US
dc.subjectClassificationen_US
dc.titleA New Shapley-Based Feature Selection Method in a Clinical Decision Support System for the Identification of Lung Diseasesen_US
dc.typeArticleen_US
dc.authoridÖZCAN, Nermin/0000-0001-5327-9090-
dc.institutionauthor-
dc.departmentİzmir Institute of Technologyen_US
dc.identifier.volume13en_US
dc.identifier.issue23en_US
dc.identifier.wosWOS:001117874100001en_US
dc.identifier.scopus2-s2.0-85179346931en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.3390/diagnostics13233558-
dc.identifier.pmid38066799en_US
dc.authorscopusid57188845237-
dc.authorscopusid55792623300-
dc.authorscopusid58135677500-
dc.authorscopusid57201856994-
dc.authorscopusid56247263600-
dc.authorwosidÖZCAN, Nermin/GXG-3377-2022-
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ2-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 9, 2024

Page view(s)

98
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.