Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/14048
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNalçakan, Yağız-
dc.contributor.authorBaştanlar, Yalın-
dc.date.accessioned2023-11-11T08:56:20Z-
dc.date.available2023-11-11T08:56:20Z-
dc.date.issued2023-
dc.identifier.isbn9783031403941-
dc.identifier.issn1865-0929-
dc.identifier.urihttps://doi.org/10.1007/978-3-031-40395-8_8-
dc.identifier.urihttps://hdl.handle.net/11147/14048-
dc.descriptionScience, Engineering Management and Information Technology First International Conference, SEMIT 2022 -- 2 February 2022 through 3 February 2022en_US
dc.description.abstractAdvanced driver assistance and automated driving systems should be capable of predicting and avoiding dangerous situations. In this paper, we first discuss the importance of predicting dangerous lane changes and provide its description as a machine learning problem. After summarizing the previous work, we propose a method to predict potentially dangerous lane changes (cut-ins) of the vehicles in front. We follow a computer vision-based approach that only employs a single in-vehicle RGB camera, and we classify the target vehicle’s maneuver based on the recent video frames. Our algorithm consists of a CNN-based vehicle detection and tracking step and an LSTM-based maneuver classification step. It is computationally efficient compared to other vision-based methods since it exploits a small number of features for the classification step rather than feeding CNNs with RGB frames. We evaluated our approach on a publicly available driving dataset and a lane change detection dataset. We obtained 0.9585 accuracy with the side-aware two-class (cut-in vs. lane-pass) classification model. Experiment results also reveal that our approach outperforms state-of-the-art approaches when used for lane change detection. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2023.en_US
dc.description.sponsorshipThis work was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK), Grant No: 2244-118C079.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relationOtonom araçlarda akıllı denetim sistemi ve güvenliğitr
dc.relation.ispartofCommunications in Computer and Information Scienceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDriver assistance systemsen_US
dc.subjectManeuver predictionen_US
dc.subjectVehicle behavior predictionen_US
dc.subjectAutomobile driversen_US
dc.titleMonocular vision-based prediction of cut-in manoeuvres with LSTM networksen_US
dc.typeConference Objecten_US
dc.authorid0000-0002-3774-6872-
dc.departmentİzmir Institute of Technology. Computer Engineeringen_US
dc.identifier.volume1808 CCISen_US
dc.identifier.startpage111en_US
dc.identifier.endpage123en_US
dc.identifier.scopus2-s2.0-85172732162en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıtr
dc.identifier.doi10.1007/978-3-031-40395-8_8-
dc.relation.grantno118C079-
dc.authorscopusid57205611298-
dc.authorscopusid15833922000-
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityQ4-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeConference Object-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:Computer Engineering / Bilgisayar Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

634
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.