Please use this identifier to cite or link to this item:
Title: Anisotropic tunability of vibrational modes in black phosphorus under uniaxial compressive/tensile strain
Authors: Li, Hao
Kutlu, Tayfun
Carrascoso, Felix
Şahin, Hasan
Munuera, Carmen
Castellanos Gomez, Andres
Keywords: Black phosphorus
Deterministic transfer
Raman spectroscopy
Uniaxial strain
Publisher: Wiley
Abstract: Strain engineering is a powerful strategy for tuning the optical, electrical, vibrational properties of 2D nanomaterials. In this work, a four-point bending apparatus is constructed to apply both compressive and tensile strain on 2D anisotropic black phosphorus flake. Further polarized Raman spectroscopy is used to study the vibrational modes of black phosphorus flakes under uniaxial strain applied along various crystalline orientations. Here, a strong anisotropic blue/redshift of A1g, B2g, and A2g modes is found under compressive/tensile strain, respectively. Interestingly, mode A1g exhibits the maximum/minimum shift while mode B2g and mode A2g present the minimum/maximum shift when the strain is applied along armchair/zigzag direction. Density functional theory calculations are carried out to investigate the anisotropic strain response mechanism, finding that the strain-induced regulation of the PP bond angle, bond length, and especially interlayer interaction has a giant influence on the Raman shift. A four-point bending apparatus is constructed to study the effect of uniaxial strain on the vibrational property of anisotropic black phosphorus. Particularly, strong anisotropy on the Raman blueshift/redshift rate upon compressive/tensile strain can be observed, which results from the strain-induced regulation of the bond angle, bond length, and interlayer interactions according to density functional theory calculation analysis.image
Description: Article; Early Access
ISSN: 2196-7350
Appears in Collections:Photonics / Fotonik
Physics / Fizik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
Adv Materials Inter.pdf2.31 MBAdobe PDFView/Open
Show full item record

CORE Recommender

Page view(s)

checked on Jun 10, 2024


checked on Jun 10, 2024

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.