Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/13991
Title: Using chemosensory-induced EEG signals to identify patients with de novo Parkinson's disease
Authors: Olcay, Bilal Orkan
Onay, Fatih
Akın Öztürk, Güliz
Öniz, Adile
Özgören, Murat
Hummel, Thomas
Güdücü, Çağdaş
Keywords: Parkinson's disease
Olfaction
Functional connectivity
Entropy
Feature extraction
Classification
Publisher: Elsevier
Abstract: Objective: Parkinson's disease (PD) patients generally exhibit an olfactory loss. Hence, psychophysical or electrophysiological tests are used for diagnosis. However, these tests are susceptible to the subjects' behavioral response bias and require advanced techniques for an accurate analysis. Proposed Approach: Using well-known feature extraction methods, we characterized chemosensory-induced EEG responses of the participants to classify whether they have PD. The classification was performed for different time intervals after chemosensory stimulation to see which temporal segment better separates healthy controls and subjects with de novo PD. Results: The performances show that entropy and connectivity features discriminate effectively PD and HC participants when olfactory-induced EEG signals were used. For these methods, discrimination is over 80% for segments 100-700 and 200-800 milliseconds after stimulus onset. Comparison with Existing Methods: We compared the performance of our framework with linear predictive coding, bispectrum, wavelet entropy-based methods, and TDI score-based classification. While the entropy- and connectivity-based methods elicited the highest classification performances for olfactory stimuli, the linear predictive coding-based method elicited slightly higher performance than our framework when the trigeminal stimuli were used. Conclusion: This is one of the first studies that use chemosensory-induced EEG signals along with different feature extraction methods to classify healthy subjects and subjects with de novo PD. Our results show that entropy and functional connectivity methods unravel the chemosensory-induced neural dynamics encapsulating critical information about the subjects' olfactory performance. Furthermore, time- and frequency-resolved feature analysis is beneficial for capturing disease-affected neural patterns.
URI: https://doi.org/10.1016/j.bspc.2023.105438
https://hdl.handle.net/11147/13991
ISSN: 1746-8094
1746-8108
Appears in Collections:Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
1-s2.0-S1746809423008716-main.pdf1.27 MBAdobe PDFView/Open
Show full item record



CORE Recommender

Page view(s)

40
checked on Apr 15, 2024

Download(s)

10
checked on Apr 15, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.