Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/13991
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOlcay, Orkan-
dc.contributor.authorOnay, Fatih-
dc.contributor.authorOzturk, Guliz Akin-
dc.contributor.authorOniz, Adile-
dc.contributor.authorOzgoren, Murat-
dc.contributor.authorHummel, Thomas-
dc.contributor.authorGuducu, Cagdas-
dc.date.accessioned2023-11-11T08:55:00Z-
dc.date.available2023-11-11T08:55:00Z-
dc.date.issued2024-
dc.identifier.issn1746-8094-
dc.identifier.issn1746-8108-
dc.identifier.urihttps://doi.org/10.1016/j.bspc.2023.105438-
dc.descriptionOzgoren, Murat/0000-0002-7984-2571; Guducu, Cagdas/0000-0002-7735-4048; Hummel, Thomas/0000-0001-9713-0183en_US
dc.description.abstractObjective: Parkinson's disease (PD) patients generally exhibit an olfactory loss. Hence, psychophysical or electrophysiological tests are used for diagnosis. However, these tests are susceptible to the subjects' behavioral response bias and require advanced techniques for an accurate analysis. Proposed Approach: Using well-known feature extraction methods, we characterized chemosensory-induced EEG responses of the participants to classify whether they have PD. The classification was performed for different time intervals after chemosensory stimulation to see which temporal segment better separates healthy controls and subjects with de novo PD. Results: The performances show that entropy and connectivity features discriminate effectively PD and HC participants when olfactory-induced EEG signals were used. For these methods, discrimination is over 80% for segments 100-700 and 200-800 milliseconds after stimulus onset. Comparison with Existing Methods: We compared the performance of our framework with linear predictive coding, bispectrum, wavelet entropy-based methods, and TDI score-based classification. While the entropy- and connectivity-based methods elicited the highest classification performances for olfactory stimuli, the linear predictive coding-based method elicited slightly higher performance than our framework when the trigeminal stimuli were used. Conclusion: This is one of the first studies that use chemosensory-induced EEG signals along with different feature extraction methods to classify healthy subjects and subjects with de novo PD. Our results show that entropy and functional connectivity methods unravel the chemosensory-induced neural dynamics encapsulating critical information about the subjects' olfactory performance. Furthermore, time- and frequency-resolved feature analysis is beneficial for capturing disease-affected neural patterns.en_US
dc.description.sponsorshipThis study was supported by a grant awarded to Dr. Adile Oniz by the Dokuz Eyluel University, Department of Scientific Research Projects with B.O. Olcay et al. a grant number 2012.KB.SAG.083. Also, Dr. B. Orkan Olcay is financially supported by the project with grant number 121E122, which was awarded to Dr. Bilge Karacal & imath; by The Scientific and Technological Research Council of Turkey (TUBITAK) .en_US
dc.description.sponsorshipDokuz Eyluel University, Department of Scientific Research Projects [2012.KB.SAG.083]; Scientific and Technological Research Council of Turkey (TUBITAK) [121E122]en_US
dc.description.sponsorshipThis study was supported by a grant awarded to Dr. Adile Oniz by the Dokuz Eyluel University, Department of Scientific Research Projects with B.O. Olcay et al. a grant number 2012.KB.SAG.083. Also, Dr. B. Orkan Olcay is financially supported by the project with grant number 121E122, which was awarded to Dr. Bilge Karacali by The Scientific and Technological Research Council of Turkey (TUBITAK) .en_US
dc.language.isoenen_US
dc.publisherElsevier Sci Ltden_US
dc.relationZihinsel Aktivitelerin Tanınması için Elektroensefalografi Kanallarının Aktiviteye Özgü Uyumlarının Zamansal Organizasyonuna Dayalı Yeni Yöntemlertr
dc.relation.ispartofBiomedical Signal Processing and Controlen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectParkinson's diseaseen_US
dc.subjectOlfactionen_US
dc.subjectFunctional connectivityen_US
dc.subjectEntropyen_US
dc.subjectFeature extractionen_US
dc.subjectClassificationen_US
dc.titleUsing chemosensory-induced EEG signals to identify patients with <i>de novo</i> Parkinson's diseaseen_US
dc.typeArticleen_US
dc.authorid0000-0003-3721-6756-
dc.authorid0000-0003-1396-2885-
dc.authoridOzgoren, Murat/0000-0002-7984-2571-
dc.authoridGuducu, Cagdas/0000-0002-7735-4048-
dc.authoridHummel, Thomas/0000-0001-9713-0183-
dc.institutionauthorOlcay, Bilal Orkan-
dc.institutionauthorOnay, Fatih-
dc.departmentIzmir Institute of Technologyen_US
dc.identifier.volume87en_US
dc.identifier.wosWOS:001082128200001en_US
dc.identifier.wosWOS:001082128200001-
dc.identifier.scopus2-s2.0-85171865684en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.bspc.2023.105438-
dc.relation.grantno1.21E+124-
dc.authorscopusid57190736569-
dc.authorscopusid56198946500-
dc.authorscopusid58611680200-
dc.authorscopusid25226303200-
dc.authorscopusid6701714936-
dc.authorscopusid57203055845-
dc.authorscopusid34768105900-
dc.authorwosidOlcay, Bilal/AAJ-1750-2020-
dc.authorwosidONAY, Fatih/JTS-5177-2023-
dc.authorwosidOzgoren, Murat/AAI-2149-2021-
dc.authorwosidGuducu, Cagdas/F-9649-2016-
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ1-
dc.description.woscitationindexScience Citation Index Expanded-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
Appears in Collections:Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1-s2.0-S1746809423008716-main.pdf1.27 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 9, 2024

Page view(s)

172
checked on Nov 18, 2024

Download(s)

56
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.