Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/13964
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Akdeniz, Eyüp Kaan | - |
dc.contributor.author | Erdoğmuş, Nesli | - |
dc.date.accessioned | 2023-11-11T08:54:55Z | - |
dc.date.available | 2023-11-11T08:54:55Z | - |
dc.date.issued | 2023 | - |
dc.identifier.isbn | 979-8-3503-4355-7 | - |
dc.identifier.issn | 2165-0608 | - |
dc.identifier.uri | https://doi.org/10.1109/SIU59756.2023.10223964 | - |
dc.identifier.uri | https://hdl.handle.net/11147/13964 | - |
dc.description | 31st IEEE Conference on Signal Processing and Communications Applications (SIU) -- JUL 05-08, 2023 -- Istanbul Tech Univ, Ayazaga Campus, Istanbul, TURKEY | en_US |
dc.description.abstract | In this study, samples with higher potential to succeed in wolf attacks are picked among synthetically generated iris images, and the composed subset is shown to pose a more significant threat toward an iris recognition system backed by a Presentation Attack Detection (PAD) module with respect to randomly selected samples. Iris images generated by Deep Convolutional Generative Adversarial Networks (DCGAN) are firstly filtered by rejection sampling on PAD score distribution of real iris image PAD scores. Next, the probability of zero success in all attack attempts is calculated for each synthetic iris image, using real iris images in the training set, and match and non-match score distributions are calculated on those. Synthetic images with the lowest probabilities of zero success are included in the final set. Our hypothesis that this set would be more successful in wolf attacks is tested by comparing its spoofing performances with randomly selected sample sets. | en_US |
dc.language.iso | tr | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 2023 31st Signal Processing and Communications Applications Conference, Siu | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Iris spoofing attack | en_US |
dc.subject | Synthetic iris | en_US |
dc.subject | Wolf attack | en_US |
dc.subject | Security | en_US |
dc.title | Kurt saldırıları için sentetik irislerde örnek seçilimi | tr |
dc.title.alternative | Sample picking in synthetic irides for wolf attacks | en_US |
dc.type | Conference Object | en_US |
dc.authorid | 0000-0002-5895-0821 | - |
dc.authorid | 0000-0002-6875-2685 | - |
dc.department | İzmir Institute of Technology. Computer Engineering | en_US |
dc.identifier.wos | WOS:001062571000189 | en_US |
dc.identifier.scopus | 2-s2.0-85173433110 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | tr |
dc.identifier.doi | 10.1109/SIU59756.2023.10223964 | - |
dc.authorscopusid | 58635463000 | - |
dc.authorscopusid | 35746019000 | - |
dc.identifier.wosquality | N/A | - |
dc.identifier.scopusquality | N/A | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | tr | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Conference Object | - |
crisitem.author.dept | 03.04. Department of Computer Engineering | - |
Appears in Collections: | Computer Engineering / Bilgisayar Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Sample_Picking.pdf | 742.67 kB | Adobe PDF | View/Open | |
Sample_Picking.pdf | 742.67 kB | Adobe PDF | View/Open | |
Sample_Picking.pdf | 742.67 kB | Adobe PDF | View/Open |
CORE Recommender
Page view(s)
164
checked on Nov 18, 2024
Download(s)
104
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.