Multi-Frame Super-Resolution Without Priors

Loading...
Thumbnail Image

Date

2023-07

Journal Title

Journal ISSN

Volume Title

Publisher

01. Izmir Institute of Technology

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

There are mainly two types of super-resolution methods: traditional methods and deep learning methods. While traditional methods define closed-form expressions with assumptions, deep learning methods rely on priors learned from data sets. However, both of them have disadvantages such as being too simple and having strong trust in priors. We focus on how to generate a high-resolution image using low-resolution images without priors by utilizing spatial hash encoding. We propose a grid-based super-resolution model using spatial hash encoding to map coordinate information into higher dimensional space. Our aim is to eliminate long training times and not rely on priors from data sets that are not able to cover all real-world scenarios. Therefore, our proposed model is able to do task- specific super-resolution without priors and eliminate potential hallucination effects caused by wrong priors.
Ağırlıklı olarak iki tür süper çözünürlük yöntemi vardır: geleneksel yöntemler ve derin öğrenme yöntemleri. Geleneksel yöntemler varsayımlarla kapalı biçimde ifadeler tanımlarken, derin öğrenme yöntemleri veri kümelerinden öğrenilen önsel bilgilere dayanır. Ancak her ikisinin de çok basit olması ve önsel bilgiye güvenin kuvvetli olması gibi dezavantajları vardır. Uzamsal özet kodlamayı kullanarak önsel bilgiler olmadan düşük çözünürlüklü görüntüler kullanarak yüksek çözünürlüklü bir görüntünün nasıl üretileceğine odaklanıyoruz. Koordinat bilgilerini daha yüksek boyutlu uzaya eşlemek için uzamsal özet kodlamayı kullanan ızgara tabanlı bir süper çözünürlüklü model öneriyoruz. Amacımız, uzun eğitim sürelerini ortadan kaldırmak ve tüm gerçek dünya senaryolarını kapsayamayan veri setlerinden elde edilen verilere güvenmemektir. Bu nedenle, önerdiğimiz model, önsel bilgiler olmadan göreve özel süper çözünürlük yapabilir ve yanlış önceliklerin neden olduğu potansiyel halüsinasyon etkilerini ortadan kaldırabilir.

Description

Thesis (Master)--İzmir Institute of Technology, Computer Engineering, Izmir, 2023
Includes bibliographical references (leaves. 37-40)
Text in English; Abstract: Turkish and English

Keywords

Super-resolution, Python implementation, High-resolution image, Deep learning, Multiresolution hash encoding

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

N/A

Scopus Q

N/A

Source

Volume

Issue

Start Page

End Page

Page Views

216

checked on Oct 24, 2025

Downloads

235

checked on Oct 24, 2025

Google Scholar Logo
Google Scholar™

Sustainable Development Goals

SDG data is not available