
A Thesis Submitted to
the Graduate School of Engineering and Sciences of

İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Engineering

by
Veli GÜLMEZ

July 2023
İZMİR

MULTI-FRAME SUPER-RESOLUTION WITHOUT
PRIORS

We approve the thesis of Veli GÜLMEZ

Examining Committee Members:

Assoc. Prof. Dr. Mustafa ÖZUYSAL

Department of Computer Engineering, İzmir Institute of Technology

Prof. Dr. Yalın BAŞTANLAR

Department of Computer Engineering, İzmir Institute of Technology

Prof. Dr. Devrim ÜNAY

Department of Electrical and Electronics Engineering, İzmir Democracy University

18 July 2023

Assoc. Prof. Dr. Mustafa ÖZUYSAL

Supervisor, Department of Computer Engineering

İzmir Institute of Technology

Prof. Dr. Cüneyt F. BAZLAMAÇCI

Head of the Department of

Computer Engineering

Prof. Dr. Mehtap EANES

Dean of the Graduate School of

Engineering and Sciences

ACKNOWLEDGMENTS

I would like to thank my supervisor, Assoc. Prof. Dr. Mustafa Özuysal, for the

valuable feedback and encouragement during the thesis. I also am grateful for helping me

improve myself in foreseeing further possible developments.

I would like to acknowledge Ersin Çine for introducing me to how to do research

at the beginning of my undergraduate studies.

I would like to thank my mom and my brother for all the endless support and

delicious dishes.

Finally, I would like to thank my girlfriend, Ceren, for her support, love, and

patience.

ABSTRACT

MULTI-FRAME SUPER-RESOLUTION WITHOUT PRIORS

There are mainly two types of super-resolution methods: traditional methods and

deep learning methods. While traditional methods define closed-form expressions with

assumptions, deep learning methods rely on priors learned from data sets. However, both

of them have disadvantages such as being too simple and having strong trust in priors.

We focus on how to generate a high-resolution image using low-resolution images without

priors by utilizing spatial hash encoding. We propose a grid-based super-resolution model

using spatial hash encoding to map coordinate information into higher dimensional space.

Our aim is to eliminate long training times and not rely on priors from data sets that are

not able to cover all real-world scenarios. Therefore, our proposed model is able to do

task-specific super-resolution without priors and eliminate potential hallucination effects

caused by wrong priors.

iv

ÖZET

ÖNSEL BİLGİSİZ ÇOKLU GÖRÜNTÜDEN
SÜPER ÇÖZÜNÜRLÜK

Ağırlıklı olarak iki tür süper çözünürlük yöntemi vardır: geleneksel yöntem-

ler ve derin öğrenme yöntemleri. Geleneksel yöntemler varsayımlarla kapalı biçimde

ifadeler tanımlarken, derin öğrenme yöntemleri veri kümelerinden öğrenilen önsel bil-

gilere dayanır. Ancak her ikisinin de çok basit olması ve önsel bilgiye güvenin kuvvetli

olması gibi dezavantajları vardır. Uzamsal özet kodlamayı kullanarak önsel bilgiler ol-

madan düşük çözünürlüklü görüntüler kullanarak yüksek çözünürlüklü bir görüntünün

nasıl üretileceğine odaklanıyoruz. Koordinat bilgilerini daha yüksek boyutlu uzaya eşle-

mek için uzamsal özet kodlamayı kullanan ızgara tabanlı bir süper çözünürlüklü model

öneriyoruz. Amacımız, uzun eğitim sürelerini ortadan kaldırmak ve tüm gerçek dünya

senaryolarını kapsayamayan veri setlerinden elde edilen verilere güvenmemektir. Bu ne-

denle, önerdiğimiz model, önsel bilgiler olmadan göreve özel süper çözünürlük yapabilir

ve yanlış önceliklerin neden olduğu potansiyel halüsinasyon etkilerini ortadan kaldırabilir.

v

TABLE OF CONTENTS

LIST OF FIGURES viii

LIST OF TABLES 1

CHAPTER 1. INTRODUCTION 2

1.1. Related Work . 3

1.1.1. Single Image Super-resolution (SISR) 3

1.1.2. Multi-frame Super-resolution (MFSR) 4

1.2. Motivation . 5

1.3. Thesis Goals and Contributions 6

1.4. Organization of the Thesis . 6

CHAPTER 2. PYTHON IMPLEMENTATION OF MULTIRESOLUTION HASH

ENCODING 8

2.1. Introduction . 8

2.1.1. Neural Graphics Primitives 8

2.1.2. Aim of Multiresolution Hash Encoding 9

2.1.3. Types of Encoding . 9

2.2. Methodology . 12

2.3. Implementation . 14

2.3.1. Setup . 14

2.3.2. Results . 15

CHAPTER 3. MULTI-FRAME SUPER-RESOLUTION WITHOUT PRIORS 19

3.1. Introduction . 19

3.2. Methodology . 20

3.2.1. Calculation of Affine Matrix 21

3.2.2. Grid-based Super-Resolution using Spatial Hash Encoding . 22

3.2.3. Grid-based Super-Resolution using Spatial Hash Encoding

with 2D Block Space . 24

3.3. Experiments . 26

vi

3.3.1. Setup . 26

3.4. Results and Conclusion . 27

CHAPTER 4. CONCLUSION 34

4.1. Conclusion . 34

4.2. Discussion . 35

4.3. Future Work . 35

APPENDICES 40

APPENDIX A. PYTHON CODE FOR MULTIRESOLUTION HASH ENCODING 41

APPENDIX B. PYTHON CODE FOR MULTI-FRAME SUPER-RESOLUTIN

WITHOUT PRIORS 48

APPENDIX C. ADDITIONAL RESULTS OF MULTI-FRAME SUPER-RESOLUTION

WITHOUT PRIORS 54

vii

LIST OF FIGURES

Figure Page

Figure 1.1. Aliasing, blurring, and noise are the main challenges of super-resolution. 2

Figure 1.2. Visualization of hallucination effects, such as leaves and flowers, can

be observed in parts (b) and (c), which are not seen in the reference

image shown in part (a). 4

Figure 2.1. An overview of multiresolution hash encoding. It gets 2D coordinate

x, concatenates encodings after hash encoding, and then gives the

concatenated encodings to MLP as inputs. 9

Figure 2.2. Examples of quadtree and spatial hashing. 11

Figure 2.3. The architecture design of multiresolution hash encoding.28 12

Figure 2.4. Visualization of bilinear interpolation effects after the extraction of

encodings. In the first row, the poor results, which are PSNR = 20.57,

are demonstrated without bilinear interpolation while the enhanced

results, which are PSNR = 21.42, are shown with bilinear interpolation

in the last row. 13

Figure 2.5. We analyze T, F, and L in terms of time and PSNR score using a 1344

x 896 resolution wall image. We choose F=2 and L=16 in the (a) part

while we determine T=220 in the (b) part. 16

Figure 2.6. Visualization of training steps for a 1344 x 896 resolution wall image. 17

Figure 2.7. Visualization of training steps for an 812 x 1084 resolution Albert

Einstein image. 18

Figure 3.1. Our baseline architecture. It does not include 2D block space after

the MLP part. 23

Figure 3.2. Our proposed architecture with 2D block space. 25

Figure 3.3. We evaluate the PSNR and SSIM scores for different numbers of low-

resolution images used to generate a high-resolution image, using the

4x downsampled synthetic dataset. We choose T=224, F=2, and L=16

for the experiment. 28

viii

Figure 3.4. We evaluate the PSNR and SSIM scores for different hash table sizes to

generate a high-resolution image, using the 4x downsampled synthetic

dataset. We choose N=14, F=2, and L=16 for the experiment. . . . 29

Figure 3.5. We evaluate the PSNR and SSIM scores for different numbers of

levels and lengths of feature vectors to generate a high-resolution

image, using the 4x downsampled synthetic dataset. We choose

N=14 and T=224 for the experiment. 29

Figure 3.6. The results of bicubic interpolation, SR332 and ours. 32

Figure 3.7. The results of bicubic interpolation, DeepRep3 and ours. 33

Figure C.1. The additional results of bicubic interpolation, SR3[32] and ours. . 58

Figure C.2. The additional results of bicubic interpolation, DeepRep[3] and ours. 62

ix

LIST OF TABLES

Table Page

Table 2.1. Comparison of our implementation with CUDA implementation of

multiresolution hash encoding. 14

Table 3.1. Comparison among our proposed architecture with and without 2D

block space, and bicubic interpolation on the synthetic dataset of 4x

upsampling. 26

Table 3.2. Comparison among our proposed method with 2D block space, SR3,32

and bicubic interpolation on the 8x downsampled synthetic dataset. . 30

Table 3.3. Comparison among our proposed method with 2D block space, Deep-

Rep,3 and bicubic interpolation on the 4x downsampled synthetic

dataset. 31

1

CHAPTER 1

INTRODUCTION

Due to the success of artificial intelligence, the demand for generating high-quality

images is increasing significantly. Many applications use state-of-the-art methods to

obtain better-quality images such as astronomical images,6 medical images,12 and mo-

bile phones.40 These methods employ a combination of denoising and super-resolution

approaches which considers only reducing noises and produces an image with high fre-

quency and high spatial resolution using low-resolution image or images, respectively.

Therefore, we can obtain images with less noise and high resolution by applying both

methods.

(a) Original (b) Alising (c) Blurring (d) Noise

Figure 1.1. Aliasing, blurring, and noise are the main challenges of super-resolution.

However, we have a lack of information to generate a high-resolution image due

to hardware and software limitations.25,34 These limitations are caused by the distance

between the object and the camera, and the components of the camera such as aperture,

ISO value, and shutter speed value. They affect the amount and the quality of light entering

the camera. Hence, we cannot obtain a better high-resolution image.25 point outs three

problems leading to challenges in super-resolution: blurring, aliasing, and noise as shown

in Figure 1.1. Blurring is caused by motion blur, optical blur, and lens blur while light

noise, hardware specification noise, and quantization noise lead to noise in the image. The

final factor is that aliasing loses some signals and occurs when components of a signal are

above the Nyquist frequency.

There are two well-known approaches dealing with the denoising and super-

2

resolution problem: single image super-resolution (SISR) and multi-frame super-resolution

(MFSR). SISR only works with low-resolution and high-resolution image pairs while

MFSR utilizes multiple low-resolution images to generate a high-resolution image with

priors or without priors.

In this thesis, we focus on how to generate a high-resolution image using low-

resolution images that come from the same scene with subpixel shifts by utilizing task-

agnostic architecture. Therefore, we get rid of long training times and do not rely on

learnable priors from data sets that are not able to cover all real-world scenarios.

1.1. Related Work

In this section, we briefly discuss proposed methods to obtain a high-resolution

image from low-resolution image or images. There are mainly used two approaches: single

image super-resolution (SISR) and multi-frame super-resolution (MFSR). We review the

proposed methods under traditional image processing and deep learning. Finally, we see

two evaluation metrics, peak signal-to-noise ratio (PSNR) and structural similarity index

measure (SSIM), to calculate errors between a generated high-resolution image and a

ground truth image.

1.1.1. Single Image Super-resolution (SISR)

In SISR, we use only low-resolution image or both low-resolution and high-

resolution image pairs to obtain a high-resolution image. It is very practical and has

less power consumption compared to multiple ones. Most of the research is on this

subject.

The first one employs traditional image processing methods.7,14,22,30,33,37 These

methods have very limited information to solve the problem but they are practical and easy

to implement. However, their results are not satisfying. Therefore, they can be used in

real-time applications with average accurate high-resolution images.

In recent years, the deep learning method becomes very popular due to its success

and practicality. It trains a large data set that involves low-resolution and high-resolution

3

image pairs. Hence, it obtains prior information and with this, it generates a high-

resolution image using only a low-resolution image. It achieves better scores than the

traditional way.9,17,20,23,31,32,39,41 In spite of the high scores, it leads to some problems like

hallucinations as shown in Figure 1.2. It may create unidentified effects while generating a

high-resolution image.34 Because it strongly relies on priors and data sets used in training

that do not cover all real-world scenarios..1

(a) Reference (b) SR332 (c) StableDiffusion31

Figure 1.2. Visualization of hallucination effects, such as leaves and flowers, can be
observed in parts (b) and (c), which are not seen in the reference image shown in part (a).

1.1.2. Multi-frame Super-resolution (MFSR)

Thanks to advances in camera and hardware technology of mobile phones, we take

multiple shots with our cameras. These serial shots are taken in burst mode. We easily

benefit from additional data coming from different conditions such as light, motion, and

hardware.

In contrast to SISR, MFSR is more general due to exploiting more than one low-

resolution images. Thus, the dependence on priors reduces compared to a single one.29

Although a decrease in undesirable effects with multiple images, we need to figure out

emerging problems such as motion and fusion among low-resolution images.

In the traditional way, there are various proposed methods under different al-

gorithms: frequency-domain,36 kernel-based,40 reconstruction-based,15 and maximum a

posteriori (MAP)11 methods. These methods are more robust compared to the single one

4

despite simple assumptions, i.e., the distribution of noise on the image is the Gaussian

noise. However, they also are not able to avoid sub-optimal solutions and hallucination

effects.

With the ability to work with huge neural networks, multiple low-resolution images

are studied to figure out the super-resolution problem. Since 2012, when deep learning

techniques such as AlexNet19 gained popularity, there has been a surge in research on super-

resolution, with many works proposed in different subfields of deep learning.2,3,5,8,10,13,16

These works give better results, but they try to solve extra problems like translation. For

that reason, their training time is too long and is not suitable for real-time applications.

Unfortunately, they also cannot prevent undesirable effects, in particular, generative models

are not stable while generating high-resolution images.

1.2. Motivation

Exploiting priors brings about some undesirable effects like hallucinations while

constructing high spatial resolution. Besides that, it suffers from narrow data sets because

it cannot cover all cases in real-world applications. We can acquire more meaningful than

the single-image approach thanks to the multi-frame approach. It takes advantage of extra

useful data from low-resolution frames. Unfortunately, MFSR with priors is not able to

diminish prior effects due to learnable parameters using low-resolution images and high-

resolution image pairs. If we would like to get high-resolution images without hallucination

effects, we take advantage of task-agnostic super-resolution which incorporates only low-

resolution images coming from the same scene into the procedure of generating the

high-resolution image. Therefore, we can get rid of undesirable effects and training with

large data sets.

This work28 proposes an architecture that learns an image using multiresolution

hash encoding and simple multilayer perceptrons (MLPs). It extracts embeddings at dif-

ferent resolutions with 2D coordinate-based information and a learnable hash mechanism.

Thus, it provides independence in the task and reduces dependence on the data sets. Also,

due to simple architecture, it is easy to implement parallelism. In conclusion, we leverage

task agnosticism and parallelism.

We can take advantage of hash encoding architecture to solve super-resolution

5

problem. In contrast to this architecture, we learn a high spatial resolution image using

low-resolution images as ground truths. Our task-agnostic structure utilizes the hash

encoding mechanism, which eliminates the need for prior knowledge. Additionally, unlike

traditional super-resolution approaches that are stuck with local minima due to their

trivial assumptions, our method uses hash encoding and a simple MLP to overcome these

limitations.

1.3. Thesis Goals and Contributions

The objective of this thesis is to develop a model that generates high-resolution

images from low-resolution images, without relying on priors. To achieve this, we utilize a

task-agnostic architecture that takes low-resolution images as ground truths. Furthermore,

thanks to the task-agnostic architecture, we do not need to make simple assumptions about

the distribution of noise, such as assuming it follows a Gaussian distribution.

Our main contributions in this thesis can be summarized as follows:

• design a task-agnostic super-resolution model that can be used in different areas

such as astronomical, medical, and mobile phones,

• accelerate the super-resolution model using the Numba framework,

• remove the need for large data sets using only employing low-resolution images

from the same scene to generate high-resolution images,

• dispose of any potential hallucination effects due to the prior-free architecture,

• avoid simple assumptions by integrating the task-agnostic super-resolution model

implicitly.

1.4. Organization of the Thesis

The organization of the thesis is as follows:

• Chapter 2 presents the background of multiresolution hash encoding architecture28

and the Python implementation of this architecture,

6

• Chapter 3 proposes a grid-based super-resolution method using a spatial hash

encoding that generates a high-resolution image using low-resolution images without

prior information,

• Chapter 4 starts with a research summary and contributions and finally ends up

with a comparison of obtained results. Then, we mention future works in the last

section.

7

CHAPTER 2

PYTHON IMPLEMENTATION OF MULTIRESOLUTION

HASH ENCODING

In this chapter, we present the background of multiresolution hash encoding archi-

tecture28 and the Python implementation of this architecture. In Chapter 3, we use this

architecture to generate high-resolution images using low-resolution images as ground

truths. Section 2.1 presents why we need to parameterize neural graphics primitives with

trainable encodings by fully connected neural networks, as well as demonstrates how to

provide a task-independent structure exploiting the hash mechanism. Section 2.2 presents

the mathematical background and components of the multiresolution hash encoding archi-

tecture and the analysis of configurable parameters in detail. On the other hand, Section

2.3 focuses on the Python implementation of the architecture, rather than the original

project with CUDA-based implementation due to the slow compilation time, and includes

examples of how the model can be used for learning a single image.

2.1. Introduction

This section will focus on two key topics related to computer graphics primitives.

Firstly, it will explore how to use multi-layer perceptions (MLPs) to parameterize the

mathematical functions of these primitives. Secondly, it will investigate the topic of adap-

tive, effective, and task-agnostic mapping of trainable encodings to higher-dimensional

space through the use of multiresolution hash encoding.

2.1.1. Neural Graphics Primitives

Computer graphics primitives, represented as mathematical functions, are basic

geometric objects to construct more complex graphical images. These primitives are

parameterized by neural networks like NeRF27 that represents radiance fields as neural

8

MLP

Figure 2.1. An overview of multiresolution hash encoding. It gets 2D coordinate x,
concatenates encodings after hash encoding, and then gives the concatenated encodings
to MLP as inputs.

graphic primitives for view synthesis. Therefore, we improve quality and acceleration of

graphical construction using this implicit representation.

2.1.2. Aim of Multiresolution Hash Encoding

Multiresolution hash encoding proposes an architecture to represent graphics prim-

itives utilizing a sparse parametric encoding approach through sparse hashing as shown

in Figure 2.1. Thanks to the hash mechanism, the architecture provides three important

features. The first one is adaptivity, we modify the architecture by configuring hashing

parameters. The other one is efficiency. We get rid of control flows and therefore we

implement operations of hash tables in parallel through the use of hashing data structure.

The last is the independence of the task. Without prior knowledge, hash tables are able to

prioritize the feature vectors according to their importance.

2.1.3. Types of Encoding

In the previous subsection, we see the advantages of encoding in terms of conver-

gence and performance. Here, we focus on the other encoding types and the difference

between them and the proposed multiresolution hash encoding.

9

The reason for the use of encoding, we achieve high-frequency details while

mapping inputs to higher dimensional space by utilizing high-frequency functions. We

review three kinds of encodings: frequency, parametric, and sparse parametric encodings

as shown in Figure 2.2.

To encode inputs, frequency encoding uses functions that repeat themselves at a

certain rate like waveform functions. Transformers38 show the impact of this encoding

to define them as positions of tokens in a sequence through sine and cosine encoding

functions:

E(𝑥) = (𝑠𝑖𝑛(20𝑥), 𝑠𝑖𝑛(21𝑥), ..., 𝑠𝑖𝑛(2𝐿−1𝑥), 𝑐𝑜𝑠(20𝑥), 𝑐𝑜𝑠(21𝑥), ..., 𝑐𝑜𝑠(2𝐿−1𝑥)), (2.1)

where 𝑥 ∈ R is the scalar positions and 𝐿 ∈ N is the multiresolution sequence. NeRF27

exploits this function by mapping five-dimensional coordinate into higher dimensional

space to generate high-frequency scene details.

Another type of encoding is parametric encoding. It utilizes grid-based and tree-

based approaches to represent inputs as parametric encodings, which are fixed trainable

encodings. These structures decrease convergence time significantly as well as have less

computational time than large neural networks. However, they suffer from vast memory

allocation for storing features of data structures. A work26 of the parametric encoding

maps inputs with a coordinate-based encoder into higher dimensional space. In spite of

achieving better performance than previous parametric encodings, it needs to calculate

more operations.

The final encoding type is sparse parametric encoding, also multiresolution hash

encoding belongs to this type of parametric encoding. We see that parametric encoding

approaches obtain better scores than frequency approaches. Unfortunately, they need

to cope with huge memory consumption and flexibility. Multiresolution hash encoding

figures out these problems using a spatial hash table, which is controlled by adding

configurable hyperparameters, T and F, hash table size, and length of feature vectors

respectively. In addition, we do not extract features from images instead we generate

our defined features and update them thanks to the task-agnostic structure of the spatial

hashing.

10

3
4

7

2
5

6

1

(a) Samples

3 4

7

1 2

5

6

(b) Quadtree

4
7

3 2
5
6

1

(c) Spatial hashing

Figure 2.2. Examples of quadtree and spatial hashing.

11

Figure 2.3. The architecture design of multiresolution hash encoding.28

2.2. Methodology

In this section, we cover the design and components of the architecture. As

discussed before in Section 2.1.2, the aim of multiresolution hash encoding is to map 2D

coordinate-based information into 3D RGB color space to learn a single image. There

are mainly two steps in the learning phase: encoding of 2D coordinate inputs and neural

networks. In the encoding phase, spatial hashing is used to encode 2D coordinate inputs

at different resolutions using a grid-based approach. Latter, neural networks use extracted

encodings as inputs to generate an RGB value of a given coordinate.

We define the hyperparameters of the architecture: T, the size of the hash table;

F, the length of the feature vectors; and L, the number of levels. The hash table size T

controls memory consumption and quality of the image as well as affects the performance

of the architecture as shown in Figure 2.5. The number of resolutions for the grid structure

is configured by L. L is also related to minimum resolution (coarsest details), maximum

resolution (finest details) parameters, and a proportion between consecutive levels:

𝑝𝐿−1 =
𝑅𝑚𝑎𝑥

𝑅𝑚𝑖𝑛

, (2.2)

where 𝑝 is the proportion, 𝑅𝑚𝑎𝑥 is the finest resolution and 𝑅𝑚𝑖𝑛 is the coarsest resolution.

The last hyperparameter F is the length of the feature vectors. L and F are also related to

quality and performance. The effects of hyperparameters are discussed in Section 2.3.28

founds that the optimum values of T, L, and F, which are 219, 16, and 2 respectively.

In this part, we focus on the details of the architecture in Figure 2.3. In the

12

beginning, we calculate the corresponding indices of the given 2D coordinate x for each

level. Thus, we map 2D integer coordinates for each level into higher dimensional space

through a spatial hash function35 with the given formula:

H(x) = 𝑥𝑖

⊕
𝜋𝑦𝑖 mod T, (2.3)

where 𝜋 = 2654435761 and ⊕ is the bit-wise XOR operation. If the size of the hash table

is higher than the grid parameters of the current level, one-to-one mappings are applied

without collision. However, at the finer levels, the hash function is used with no need to

handle collision. Because it explicitly deals with collision handling by neural network

optimization.

We get feature vectors using indices of the hash tables with the given 2D coordinate.

The reason for the bilinear interpolation of feature vectors is to make them continuous to

prevent undesirable visual effects as shown in Figure 2.4.

Figure 2.4. Visualization of bilinear interpolation effects after the extraction of encodings.
In the first row, the poor results, which are PSNR = 20.57, are demonstrated without
bilinear interpolation while the enhanced results, which are PSNR = 21.42, are shown
with bilinear interpolation in the last row.

After interpolation, we concatenate the interpolated feature vectors at different

levels to give them as inputs to the neural networks. Until here, we encode 2D coordinate

information into higher-dimensional space. Now, we utilize neural networks to calculate

the corresponding RGB value of the given coordinate x. We take advantage of less memory

consumption and nonlinearity thanks to the neural networks.

13

2.3. Implementation

In this section, Python implementation is presented instead of the original architec-

ture written using CUDA. The reason why we implement Python is the long compilation

time, which makes it difficult for us to perform our experiments. Therefore, we use the

Numba21 which is a just-in-time (JIT) compiler for Python. It directly translates Python

code to machine codes as well as supports CUDA GPU programming using Python code.

In Table 2.1, we compare the execution time of our Python implementation with

the original CUDA version after 5000 epochs. Our implementation runs slower than the

CUDA version, but we do not need to wait the compilation time. Besides that, we achieve

better scores despite using the same configuration. It probably is related to quantization

issues. Furthermore, Python benefits from the just-in-time (JIT) compiler, which incurs

no compilation time and only has compilation overhead. However, compiling the CUDA

version takes significant time, approximately 10 minutes.

Table 2.1. Comparison of our implementation with CUDA implementation of multireso-
lution hash encoding.

Method PSNR ↑ Time (s) ↓
Original 20.19 ∼ 16

Ours 25.78 ∼ 88

2.3.1. Setup

We conduct our experiments on Nvidia GeForce RTX 2060 Super. We use two

different images that are 1344 x 896 and 812 x 1084 resolutions. The aim is to learn these

images by mapping 2D image coordinates into 3D RGB values. We use PSNR scores to

evaluate our experiments.

We follow the configurations of the paper28 setting the hash table size T to 219,

the number of levels L to 16, and the length of the feature vectors F to 2. For the

neural networks part, we use 2 hidden layers including 64 neurons for each layer and the

ReLU activation function is used after the hidden layers. We use uniform distribution

U(−10−4, 10−4) for the initialization of feature vectors in the hash tables. In the training

14

configuration, we choose Adam optimizer18 with 𝛽1 = 0.9, 𝛽2 = 0.99, and 𝜖 = 10−15.

Finally, we use the 𝐿2 loss function as defined below:

𝐿 =
1

𝑁

𝑁∑︁
𝑖=0

𝐶∑︁
𝑐=0

(𝑦𝑖𝑐 − 𝑦𝑖𝑐)2, (2.4)

where N is the number of given coordinates, and C is the channel size, which is generally

3. Additional implementation codes are shown in Appendix A.

2.3.2. Results

We demonstrate the effects of hyperparameters, T, F, and L in terms of PSNR

scores and execution time in Figure 2.5. Besides that, we visualize the estimated image

for each determined training interval in Figure 2.7 and Figure 2.6.

We investigate the effects of the hash table size T, the length of feature vectors F,

and the number of levels L using an image as shown in Figure 2.5. Firstly, as we increase T,

we observe an improvement in the PSNR score without a significant increase in execution

time, and also the memory usage increases linearly. The major improvement in the PSNR

score is due to fewer hash collisions. Secondly, F does not perform well if we set it to 1.

However, there are no significant improvements in the 2, 4, and 8 configurations as well

as the memory usage and the execution time. The last one is that while we increase the L

value, we obtain higher PSNR scores, but the execution time and memory usage increase

significantly.

As we randomly start our estimated image as shown in Figure 2.7 and Figure 2.6,

we obtain a black image in the initial state. However, the model learns very fast the

structure first without colorization. After that, it colorizes the image and we get the final

image.

15

(a)

(b)

Figure 2.5. We analyze T, F, and L in terms of time and PSNR score using a 1344 x 896
resolution wall image. We choose F=2 and L=16 in the (a) part while we determine T=220
in the (b) part.

16

(a) Final State (b) Reference

(c) Initial, 100, 1000, 2500, and 5000 states

Figure 2.6. Visualization of training steps for a 1344 x 896 resolution wall image.

17

(a) Final State (b) Reference

(c) Initial, 100, 1000, 2500, and 5000 states

Figure 2.7. Visualization of training steps for an 812 x 1084 resolution Albert Einstein
image.

18

CHAPTER 3

MULTI-FRAME SUPER-RESOLUTION WITHOUT

PRIORS

In this chapter, we propose a method that generates a high-resolution image us-

ing low-resolution images without prior knowledge. Section 3.1 presents the aim of

our proposed method and the differences between super-resolution and multiresolution

hash encoding28 as well as gives a general introduction to the methodology. Section

3.2 focuses on the proposed methodology with the calculation of affine transformation

among low-resolution images and different setups of our architecture in detail. Section 3.3

demonstrates the results of different experimental setups and comparisons with bicubic in-

terpolation, single-image super-resolution methods,31,32 and multi-frame super-resolution

method.3 Section 3.4 discusses the results in terms of PSNR scores and obtaining a

high-resolution image with or without priors.

3.1. Introduction

In this chapter, we focus on how to generate a high-resolution image using low-

resolution images of the same scene that have translations and rotations by utilizing spatial

hash encoding at different resolutions. We aim to obtain a high-resolution image without

learnable priors, only using low-resolution images as ground truths. We achieve this aim

through spatial hash encoding that takes coordinate information from the initialized high-

resolution image to encode the coordinate-based input to high-dimensional encodings.

Then, we give these encodings to a simple multilayer perceptron and finally, we get

RGB values of the given coordinates. Therefore, we enhance the randomly initialized

high-resolution image iteratively using low-resolution images as ground truths.

We give a detailed version of multiresolution hash encoding in Chapter 2. Here, we

discuss what is the difference between multiresolution hash encoding and super-resolution.

Super-resolution with spatial hash encoding is to obtain a high-resolution image rather

19

than the original image resolution as well as to use low-resolution images as ground

truths instead of the original image as shown in Figure 3.1. The main similarity is that we

update features in the hash tables iteratively while training utilizing multiple low-resolution

images corresponding coordinate information.

We propose a multi-frame super-resolution method without considering learnable

prior knowledge. We do experiments with different setups. We create two different

setups for our experiments: one in which we know the affine matrix between pairs of low-

resolution images and another in which we do not know the affine matrix. Besides that,

we design a 2D square translation space that covers normalized translation between low-

resolution image pairs to generate more accurate RGB generation for each low-resolution

image with its translation matrix.

3.2. Methodology

In this section, we focus on our proposed architecture for the super-resolution prob-

lem. The aim is to obtain a high-resolution image by mapping coordinate information into

higher dimensional space with spatial hash encoding and a simple multilayer perceptron

architecture. Our motivation is to develop a general super-resolution architecture that does

not rely on learnable priors from large data sets. By eliminating undesirable hallucination

and colourization effects through our proposed solution that does not rely on priors, we

aim to obtain high-quality images. Therefore, we only use low-resolution images from the

same scene to generate a corresponding high-resolution image, not train with enormous

data sets.

In Chapter 2, we see how to learn an image using learnable features in the hash

tables at different levels using multiresolution hash encoding. In this setup, we only use

an image to update features iteratively with given coordinate information. When we give

a pixel coordinate (𝑥, 𝑦) of the given image at the end of the training, we produce an RGB

value corresponding to this coordinate through hash tables at different levels. However,

our proposed architecture differs from this setup in terms of the generated image, ground

truths, and additional 2D translation space covering translation information among ground

truth images. The generated image will be our high-resolution image, which is a higher

spatial resolution than ground truths images. We utilize the low-resolution images as

20

ground truths and design a loss function to account for all of them.

We choose a low-resolution image as the base image and determine the transfor-

mation between the base image and other image pairs to gather additional information.

Therefore, we design an algorithm to calculate the transformation. We utilize SIFT24

algorithm to extract keypoints from image pairs and to apply a brute-force matcher algo-

rithm to match descriptors. After keypoint matching, we sort these matches in terms of

the Euclidean distance of descriptors to select the best minimum three keypoints. Then,

with these three keypoints, we calculate the affine transformation between image pairs. In

Section 3.2.1, we give the calculation of the affine transformation matrix in detail.

Firstly, we propose a baseline architecture that does not include 2D block space.

This architecture generates an RGB value corresponding to the given pixel coordinate

and it compares this RGB value with all ground truth images. However, in the second

approach, we design a 2D block space to cover affine translations among low-resolution

images. We choose a base image from low-resolution images and we calculate the affine

transformation between the base image and the other image using Section 3.2.1. Therefore,

we produce individual RGB values corresponding to the given pixel coordinate for each

low-resolution image. As a result, we observe that this approach increases our PSNR score

significantly as shown in Table3.1.

3.2.1. Calculation of Affine Matrix

We assume that parallelism, collinearity, and ratio of areas and lengths are pre-

served among low-resolution images, yet there is no projective transformation. For that

reason, we determine the affine transformation matrix between the base image and the

other image from our low-resolution images so that we get the corresponding pixels for

each image.

The affine transformation is a linear transformation function that maps two vector

spaces while preserving our assumptions. It is shown

©­­­­«
𝑥
′

𝑦
′

1

ª®®®®¬
=


𝑎11 𝑎12 𝑡𝑥

𝑎21 𝑎22 𝑡𝑦

0 0 1


©­­­­«
𝑥

𝑦

1

ª®®®®¬
(3.1)

21

or also a simpler form.

x′ =


A t

0⊤ 1

 x (3.2)

Since the affine transformation has six degrees of freedom, we need six equations

to determine the affine transformation. Therefore, to obtain six equations, we choose

three points from two images, resulting in two equations for each point and a total of six

equations.

We utilize SIFT24 to extract keypoints and descriptors from images and we apply

the Brute-Force Matcher algorithm to match keypoints using descriptors based on their

distances. Also, at the end of the matching, we check each pair of descriptors with the

ratio test to eliminate outliers. After that, we solve the linear equation with selected three

points that has the minimum three distances from the matches. Finally, to minimize the

error in the affine transformation, we utilize the Levenberg-Marquardt algorithm, which

is a non-linear least squares optimization method. We use the linear solution of the affine

matrix as the initial state and calculate the least squares using all matched points after the

ratio test. Additional implementation codes are shown in Listing B.1 of Appendix B.

As a result, we warp the images depending on the base image using the determined

affine transformation as well as we use the translation information in Section 3.2.3 to

produce RGB values for each low-resolution image according to its translation.

3.2.2. Grid-based Super-Resolution using Spatial Hash Encoding

In this section, we propose a baseline model to generate a higher spatial resolution

image using low-resolution images by mapping pixel coordinates into higher dimensional

space with spatial hash encoding to produce RGB values corresponding to pixel coordi-

nates.

Firstly, we have to determine translations among low-resolution images. For that

reason, we choose a base image from them to calculate the affine transformation between

the base image and the others according to Section 3.2.1. After the calculation of the

affine translation, we warp the images based on this translation. Now, we get correctly

match the pixel coordinates for all low-resolution images to use them as ground truths.

22

Figure 3.1. Our baseline architecture. It does not include 2D block space after the MLP
part.

23

As shown in Figure 3.1, we first initialize the features into the hash tables to generate

a high-resolution image according to configurations in Chapter 2. After the initialization

of features, we get pixel coordinates to get indices of the hash table using the spatial

hash function H(.) for each surrounding corner at different levels. We get the features

with given indices of the hash tables for each surrounding corner and we apply a bilinear

interpolation to these surrounding corners to keep continuity. Then, we concatenate the

interpolated features extracted from different levels. We give these extracted features to

a simple multilayer perception, which has 2 hidden layers with 64 neurons and an output

layer with 3 neurons. The output of the neural network is an RGB value corresponding to

a given pixel coordinate for all low-resolution images. We use an 𝐿2 loss function which

is defined in Equation 2.4 based on each low-resolution image.

3.2.3. Grid-based Super-Resolution using Spatial Hash Encoding with

2D Block Space

Our proposed model without 2D block space is stuck at the average RGB values

calculated from low-resolution images. Also, in some conditions like high-contrast images,

the model is not able to generate accurate RGB values and this leads to underfitting. To

solve these problems, we integrate a 2D block space at the end of the MLP part. The MLP

part produces 4 RGB values for the 2D block space. We apply bilinear interpolation using

2D block space to generate RGB value for each low-resolution image. The integrated 2D

block space covers all low-resolution images independently of each other so that it cannot

be underfitting. We see the improvements in Table 3.1.

From the low-resolution images, we select a base image and assume it to be at

the center of a 2D block space. According to the affine translations between the base

image and the others, we normalize the translation values between [-1, 1] to represent all

low-resolution images. As shown in Figure 3.2, the neural network gives four corners with

3D RGB values rather than only a single RGB value as the baseline model. We generate

an individual RGB value for each low-resolution image depending on their translation

information through bilinear interpolation. This system enables us to utilize a loss function

for each low-resolution image independently. As a result, integrating a 2D block space

24

Figure 3.2. Our proposed architecture with 2D block space.

25

after the neural network enhances the PSNR score. Additional implementation codes are

shown in Appendix B between Listing B.2 - B.4.

Table 3.1. Comparison among our proposed architecture with and without 2D block space,
and bicubic interpolation on the synthetic dataset of 4x upsampling.

Method PSNR↑ SSIM↑
Min. of Bicubic 23.07 0.66
Avg. of Bicubic 24.76 0.75
Max. of Bicubic 25.27 0.78

Ours w/o 2D Block 27.82 0.78
Ours w/ 2D Block 28.51 0.84

3.3. Experiments

In this section, we evaluate our proposed architecture with and without 2D block

space. Besides that, we find the best hyperparameters of our architecture in terms of the

number of low-resolution images N, the hash table size T, the length of the feature vector

F, and the number of levels L.

After that, we evaluate our proposed architecture against state-of-the-art methods,

which include single-image super-resolution and multi-frame super-resolution approaches.

For the single-image super-resolution approaches, including bicubic interpolation and

SR3,32 we measure individual low-resolution images in terms of PSNR and SSIM scores.

We get their minimum, average, and maximum scores to compare with our proposed

method. In the multi-frame super-resolution comparison, including DeepRep,3 we get

only a PSNR and SSIM score using all low-resolution images and we compare these

scores with our proposed method.

3.3.1. Setup

We conduct our experiments on Nvidia GeForce RTX 2060 Super. We use three

different images to generate our synthetic dataset to compare our method with the state-

of-the-art methods. We generate our synthetic dataset that includes RAW and sRGB

color spaces following inverse camera pipeline4 and DeepBurst.2 First of all, we give

26

an image with sRGB color spaces, then we convert it into raw sensor data using inverse

camera pipeline.4 We apply random translation and rotation for all desired numbers of low-

resolution images, [-2, 2] pixels, and [-5, 5] degrees, respectively. After transformation,

these translated and rotated images are downsampled by scale factors, 4x and 8x. Before

the mosaicking, we add shot and read noise to the low-resolution images and we obtain

synthetic low-resolution images with sRGB color space. Finally, we apply the mosaicking

algorithm to the image and we obtain the final RAW low-resolution images. We use both

sRGB and RAW low-resolution images with desired crop sizes such as 64 × 64 for SR332

downsampled by 8x and 96 × 96 for DeepRep3 downsampled by 4x in comparison. There

are 25 low-resolution and high-resolution image pairs for each dataset.

We use the initialization configurations for the neural network and the encoding

parts described in Section 2.3.1 to compare our model versions and to find the optimal

hyperparameters such as the hash table size T, the length of feature vectors F, and the

number of levels L. Firstly, we compare our baseline model with the 2D block space added

to our baseline model. Secondly, we search for the optimum number of low-resolution

images for the generation of a high-resolution image. Finally, we demonstrate the ideal T,

F, and L.

We compare our proposed method with bicubic interpolation and SR332 using

the generated synthetic dataset which includes sRGB low-resolution images with 64 ×

64 resolution to generate a high-resolution image with 512 × 512 resolution. For the

comparison with DeepRep,3 we utilize RAW images from the synthetic dataset with

low-resolution and high-resolution are, 96 × 96 and 384 × 384, respectively.

3.4. Results and Conclusion

In this section, we analyze the effects of the hyperparameters such as the number

of low-resolution images N, the hash table size T, the feature vector F, and the number of

levels L. Also, we compare our proposed method with bicubic interpolation, SR332 and

DeepRep3 in terms of PSNR and SSIM scores.

Firstly, we analyze the number of low-resolution images used to generate a high-

resolution image N in Figure 3.3. As we can see if we increase the number of low-resolution

images, the model produces more accurate results due to gathering additional information.

27

Unfortunately, it sometimes cannot enhance results even decrease the scores because of

bad samples. However, when we use more images, the model is able to eliminate bad

samples and focus on accurate ones. Therefore, it is close to the saturation point after 12

images. Secondly, we investigate the effects of the hash table size T, the length of feature

vectors F, and the number of levels L as shown in Figure 3.4 and Figure 3.5. We mentioned

their effects in Chapter 2.3.2. The difference between Chapter 2 and Chapter 3 is that less

number of parameters is needed. The reason for this is to leverage additional data from

low-resolution images and the model reaches the minima faster than in Chapter 2.

(a) (b)

Figure 3.3. We evaluate the PSNR and SSIM scores for different numbers of low-
resolution images used to generate a high-resolution image, using the 4x downsampled
synthetic dataset. We choose T=224, F=2, and L=16 for the experiment.

We compare our proposed method with bicubic interpolation and SR332 on the

synthetic dataset downsampled by 8, including 25 low-resolution and high-resolution

image pairs, in terms of the single-image super-resolution manner. We evaluate each

low-resolution image independently for bicubic interpolation and SR332 and we get the

minimum, average, and maximum PSNR and SSIM scores for all image scenes in the

dataset to compare with our proposed method as shown in Table 3.2. As we can see the

generative super-resolution is not able to produce accurate results, or even it is worse than

the bicubic interpolation as shown in Figure 3.6. Additional results are shown in Figure

C.1 of Appendix C. It generates something other than what it should be and this leads

to hallucination effects. Our results are much better than SR3.32 Also, although we use

bicubic interpolation in our system, we get better scores than bicubic interpolation because

of exploiting additional data coming from many low-resolution images. We show that we

28

(a) (b)

Figure 3.4. We evaluate the PSNR and SSIM scores for different hash table sizes to
generate a high-resolution image, using the 4x downsampled synthetic dataset. We choose
N=14, F=2, and L=16 for the experiment.

(a) (b)

Figure 3.5. We evaluate the PSNR and SSIM scores for different numbers of levels and
lengths of feature vectors to generate a high-resolution image, using the 4x downsampled
synthetic dataset. We choose N=14 and T=224 for the experiment.

29

achieve better scores and consistent generation than bicubic interpolation and SR3.32

Table 3.2. Comparison among our proposed method with 2D block space, SR3,32 and
bicubic interpolation on the 8x downsampled synthetic dataset.

Method PSNR ↑ SSIM ↑
Min. of Bicubic 20.78 0.54
Avg. of Bicubic 22.87 0.63
Max. of Bicubic 23.82 0.68
Min. of SR332 13.96 0.29
Avg. of SR332 18.01 0.44
Max. of SR332 22.05 0.57

Ours 26.13 0.70

To compare our proposed method with bicubic interpolation and DeepRep3 using

4x downsampled synthetic dataset that includes 25 low-resolution and high-resolution

image pairs. This dataset has 14 low-resolution images with 96 x 96 resolution and a high-

resolution image with 384 x 384 resolution for each pair. We get the minimum, average,

and maximum PSNR and SSIM scores for bicubic interpolation while we utilize 14 low-

resolution images to generate a high-resolution image for DeepRep3 and our proposed

method. We obtain much better results compared to the 8x synthetic dataset, and the

bicubic interpolation results also increased. Because 4x upsampling is an easier problem

than 8x upsampling. When we compare our proposed method with DeepRep,3 DeepRep3

achieves high scores according to ours significantly. Our approach does not utilize priors

and we do not apply offline training before using vast super-resolution datasets as shown

in Table 3.3. We see that DeepRep3 is good at generating high frequency and high spatial

resolutions with priors as shown in Figure 3.7. Additional results are shown in Figure

C.2 of Appendix C. However, they are not able to solve colorization problems although

generating a high-resolution image in detail.

We show that our proposed model can be used to generate high-resolution images

using low-resolution images without prior information. It achieves better scores compared

to traditional and generative approaches in particular single-image super-resolution. How-

ever, the results of our proposed model are poor when we compare it with multi-frame

super-resolution approaches like DeepRep.3 They take advantage of prior information by

training immense super-resolution datasets. However, they cannot the colorization prob-

lem and sometimes generates unexpected colors. This leads to an unstable high-resolution

30

Table 3.3. Comparison among our proposed method with 2D block space, DeepRep,3 and
bicubic interpolation on the 4x downsampled synthetic dataset.

Method PSNR ↑ SSIM ↑
Min. of Bicubic 23.07 0.66
Avg. of Bicubic 24.76 0.75
Max. of Bicubic 25.27 0.78

DeepRep3 33.12 0.92
Ours 28.32 0.83

generation. As a result, our proposed model is very stable but it is worse than DeepRep3

while DeepRep3 achieves high scores but it sometimes has undesirable effects.

31

SR332 Bicubic Ours Reference

Figure 3.6. The results of bicubic interpolation, SR332 and ours.

32

Bicubic Ours DeepRep3 Reference

Figure 3.7. The results of bicubic interpolation, DeepRep3 and ours.

33

CHAPTER 4

CONCLUSION

4.1. Conclusion

In this thesis, our aim is to generate a high-resolution image exploiting multiple

low-resolution images without prior information. We design a super-resolution model

utilizing a task-agnostic architecture. This model randomly initializes learnable features

into the hash tables and maps coordinate information into higher dimensional space using

the hash tables. After that, it generates RGB values for each coordinate information after

the MLP part is given high-dimensional features as input. Thus, we achieve two important

advantages such as less training time and incapable data sets. Firstly, we do not need long

training times, we only use images coming from scenes. Later, we do not use data sets that

do not cover all real-world scenarios, so we eliminate possible undesirable effects only

using related low-resolution images.

In Chapter 2, we implement the multiresolution hash encoding architecture,28

which learns an image by extracting features at different levels into the hash tables using

the coordinate information. We demonstrate how to parametrize the graphics primitives

through spatial hashing and MLPs. Therefore, we obtain dynamic, fast, and task-agnostic

architecture that maps learnable encodings into higher-dimensional space to give them to

MLPs as input. Finally, we generate RGB values by parameterizing the given coordinate

information.

Multiresolution hash encoding28 learns an image with the same resolution and only

uses a single image as ground truth. In Chapter 3, we propose a model that utilizes the

core architecture in Chapter 2. The main differences are that we generate higher resolution

rather than given inputs and we exploit multiple low-resolution images as ground truths to

generate a high-resolution image. We aim to generate a high-resolution image by encoding

the coordinate-based input to high-dimensional encodings through the hash tables. The

main contributions are designing a task-agnostic super-resolution model that can be used

in different areas, employing low-resolution images from the same scene rather than large

34

data sets, preventing potential hallucination and colorization effects by not considering

prior information, and finally exploiting neural networks implicitly instead of defining

simple assumption to generate higher-spatial resolution.

4.2. Discussion

We show that our proposed model achieves better PSNR and SSIM scores com-

pared to single-image super-resolution approaches, but worse when compared to multi-

frame super-resolution approaches with priors. In the multi-frame super-resolution ap-

proach, they utilize prior information coming from vast super-resolution data sets and they

are able to catch high-frequency details in the images. However, they cannot solve the

colorization problem and sometimes generated unstable high-resolution images when we

compare them to our proposed model.

We expect that our proposed method increases scores of super-resolution using

additional information from multiple low-resolution images of the same scene without

super-resolution data sets. The method obtains remarkable scores but cannot achieve

higher than state-of-the-art models with priors. Because we do not know which sample

is the best or the worse. We think that the model may solve this problem by utilizing

neural networks if we get more samples from the scene. However, we cannot always get

the best samples from the scene due to environmental and hardware settings as well as we

use bicubic interpolation to upsample. This sometimes leads to converging lower scores.

If a loss function is designed to cover low-resolution images all in one piece rather than a

regression loss for each low-resolution image, we do not suffer from the local minima. But

on the other side, if we would like to generate stable results not suffering from hallucination

and colorization problems, our proposed method is more suitable than other methods with

priors.

4.3. Future Work

We use bicubic interpolation to get a higher spatial resolution for each low-

resolution image in our proposed model. If the low-resolution images are not well,

35

this means there are high noise and blur, our model cannot exploit additional data coming

from low-resolution images. It even performs worse scores when using bad low-resolution

images. We may increase our scores by exploiting additional data if we use multiple super-

resolution techniques to generate ground truths for our model. Therefore, we may reduce

hallucination and colorization effects by combining multiple methods.

We utilize a regression loss function for RGB color values for each low-resolution

image. We consider them individually. Instead of a regression loss, a smooth or curvature

loss function is used to cover samples from low-resolution images all in one piece.

The aim of this work is to produce the optimum high-resolution resolution im-

age using low-resolution images with spatial hash encoding, MLPs, and regression loss.

Instead of MLPs and regression loss, we take advantage of generative models to gener-

ate high frequency and high spatial resolutions. If we gather enough samples from the

low-resolution images, we may estimate the distribution of the high-resolution image.

Therefore, we do not need to additional loss functions explicitly.

36

REFERENCES

1. Anwar, S.; Khan, S.; Barnes, N. A Deep Journey into Super-Resolution: A Survey.

ACM Comput. Surv. 2020, 53, DOI: 10.1145/3390462.

2. Bhat, G.; Danelljan, M.; Van Gool, L.; Timofte, R. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp 9209–

9218.

3. Bhat, G.; Danelljan, M.; Yu, F.; Van Gool, L.; Timofte, R. In Proceedings of the

IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp 2460–

2470.

4. Brooks, T.; Mildenhall, B.; Xue, T.; Chen, J.; Sharlet, D.; Barron, J. T. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

2019.

5. Bulat, A.; Yang, J.; Tzimiropoulos, G. In Proceedings of the European Conference

on Computer Vision (ECCV), 2018.

6. Dabbech, A.; Terris, M.; Jackson, A.; Ramatsoku, M.; Smirnov, O. M.; Wiaux,

Y. First AI for Deep Super-resolution Wide-field Imaging in Radio Astronomy:

Unveiling Structure in ESO 137-006. The Astrophysical Journal Letters 2022, 939,

L4, DOI: 10.3847/2041-8213/ac98af.

7. Dai, S.; Han, M.; Xu, W.; Wu, Y.; Gong, Y. In 2007 IEEE Conference on Computer

Vision and Pattern Recognition, 2007, pp 1–8, DOI: 10.1109/CVPR.2007.383028.

8. Deudon, M.; Kalaitzis, A.; Goytom, I.; Arefin, M. R.; Lin, Z.; Sankaran, K.; Michal-

ski, V.; Kahou, S. E.; Cornebise, J.; Bengio, Y. HighRes-net: Recursive Fusion

for Multi-Frame Super-Resolution of Satellite Imagery, 2020, arXiv: 2002.06460

[cs.CV].

9. Dong, C.; Loy, C. C.; He, K.; Tang, X. Image Super-Resolution Using Deep Convo-

lutional Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence

2016, 38, 295–307, DOI: 10.1109/TPAMI.2015.2439281.

37

10. Dudhane, A.; Zamir, S. W.; Khan, S.; Khan, F. S.; Yang, M.-H. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022,

pp 5759–5768.

11. Fischler, M. A.; Bolles, R. C. Random Sample Consensus: A Paradigm for Model

Fitting with Applications to Image Analysis and Automated Cartography. 1981, 24,

381–395, DOI: 10.1145/358669.358692.

12. Georgescu, M.-I.; Ionescu, R. T.; Miron, A.-I.; Savencu, O.; Ristea, N.-C.; Verga, N.;

Khan, F. S. In Proceedings of the IEEE/CVF Winter Conference on Applications of

Computer Vision (WACV), 2023, pp 2195–2205.

13. Haris, M.; Shakhnarovich, G.; Ukita, N. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), 2019.

14. Hou, H.; Andrews, H. Cubic splines for image interpolation and digital filtering.

IEEE Transactions on Acoustics, Speech, and Signal Processing 1978, 26, 508–517,

DOI: 10.1109/TASSP.1978.1163154.

15. Irani, M.; Peleg, S. Improving resolution by image registration. CVGIP: Graphical

Models and Image Processing 1991, 53, 231–239, DOI: 10.1016/1049-9652(91)

90045-L.

16. Kawulok, M.; Benecki, P.; Hrynczenko, K.; Kostrzewa, D.; Piechaczek, S.; Nalepa,

J.; Smolka, B. In Real-Time Image Processing and Deep Learning 2019, ed. by

Kehtarnavaz, N.; Carlsohn, M. F., SPIE: 2019; Vol. 10996, 109960B, DOI: 10.

1117/12.2519579.

17. Kim, J.; Lee, J. K.; Lee, K. M. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2016.

18. Kingma, D. P.; Ba, J. Adam: A Method for Stochastic Optimization, 2017, arXiv:

1412.6980 [cs.LG].

19. Krizhevsky, A.; Sutskever, I.; Hinton, G. E. ImageNet Classification with Deep

Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90, DOI: 10.1145/

3065386.

20. Lai, W.-S.; Huang, J.-B.; Ahuja, N.; Yang, M.-H. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR), 2017.

38

21. Lam, S. K.; Pitrou, A.; Seibert, S. In Proceedings of the Second Workshop on the

LLVM Compiler Infrastructure in HPC, 2015, pp 1–6.

22. Li, X.; Orchard, M. New edge-directed interpolation. IEEE Transactions on Image

Processing 2001, 10, 1521–1527, DOI: 10.1109/83.951537.

23. Lim, B.; Son, S.; Kim, H.; Nah, S.; Mu Lee, K. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR) Workshops, 2017.

24. Lowe, D. G. Distinctive Image Features from Scale-Invariant Keypoints. Interna-

tional Journal of Computer Vision 2004, 60, 91–110.

25. Lukac, R., Computational photography: methods and applications; CRC press: 2017.

26. Martel, J. N. P.; Lindell, D. B.; Lin, C. Z.; Chan, E. R.; Monteiro, M.; Wetzstein, G.

Acorn: Adaptive Coordinate Networks for Neural Scene Representation. ACM Trans.

Graph. 2021, 40, DOI: 10.1145/3450626.3459785.

27. Mildenhall, B.; Srinivasan, P. P.; Tancik, M.; Barron, J. T.; Ramamoorthi, R.; Ng, R.

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. 2021,

65, 99–106, DOI: 10.1145/3503250.

28. Müller, T.; Evans, A.; Schied, C.; Keller, A. Instant neural graphics primitives with

a multiresolution hash encoding. ACM Transactions on Graphics 2022, 41, 1–15,

DOI: 10.1145/3528223.3530127.

29. Nasrollahi, K.; Moeslund, T. Super-resolution: A comprehensive survey. Machine

Vision and Applications 2014, 25, 1423–1468, DOI: 10.1007/s00138-014-0623-

4.

30. Nguyen, N.; Milanfar, P. A Wavelet-Based Interpolation-Restoration Method for

Superresolution. Circuits, Systems, and Signal Processing 2000, 19, 321–338, DOI:

10.1007/BF01200891.

31. Rombach, R.; Blattmann, A.; Lorenz, D.; Esser, P.; Ommer, B. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022,

pp 10684–10695.

32. Saharia, C.; Ho, J.; Chan, W.; Salimans, T.; Fleet, D. J.; Norouzi, M. Image Super-

Resolution via Iterative Refinement. IEEE Transactions on Pattern Analysis and

Machine Intelligence 2023, 45, 4713–4726, DOI: 10.1109/TPAMI.2022.3204461.

39

33. Stone, H.; Orchard, M.; Chang, E.-C.; Martucci, S. A fast direct Fourier-based

algorithm for subpixel registration of images. IEEE Transactions on Geoscience and

Remote Sensing 2001, 39, 2235–2243, DOI: 10.1109/36.957286.

34. Szeliski, R., Computer Vision: Algorithms and Applications, 1st; Springer-Verlag:

Berlin, Heidelberg, 2010.

35. Teschner, M.; Heidelberger, B.; Müller, M.; Pomerantes, D.; Gross, M. H. In Inter-

national Symposium on Vision, Modeling, and Visualization, 2003.

36. Tsai, R. Y.; Huang, T. S. Multiframe image restoration and registration. 1984.

37. Vandewalle, P.; Süsstrunk, S.; Vetterli, M. A Frequency Domain Approach to Reg-

istration of Aliased Images with Application to Super-Resolution. Eurasip Journal

on Applied Signal Processing 2006, 2006, DOI: 10.1155/ASP/2006/71459.

38. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser,

L. u.; Polosukhin, I. In Advances in Neural Information Processing Systems, ed. by

Guyon, I.; Luxburg, U. V.; Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan, S.;

Garnett, R., Curran Associates, Inc.: 2017; Vol. 30.

39. Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y.; Dong, C.; Qiao, Y.; Change Loy, C. In

Proceedings of the European Conference on Computer Vision (ECCV) Workshops,

2018.

40. Wronski, B.; Garcia-Dorado, I.; Ernst, M.; Kelly, D.; Krainin, M.; Liang, C.-K.;

Levoy, M.; Milanfar, P. Handheld Multi-Frame Super-Resolution. ACM Trans. Graph.

2019, 38, DOI: 10.1145/3306346.3323024.

41. Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR), 2018.

40

APPENDIX A

PYTHON CODE FOR MULTIRESOLUTION HASH

ENCODING

import numpy as np

from numba import cuda

import math

from model_utils import next_multiple , div_round_up , _forward , _sum_update_grid_params , _update_grid_params

class Encoding:

def __init__(self, scale, n_levels , base_resolution , n_features , hashmap_size , lr):

self.scale = scale

self.n_levels = n_levels

self.base_resolution = base_resolution

self.n_features = n_features

self.hashmap_size = hashmap_size

self.lr = lr

self.n_backward_contents = 9 # 4 indices, grid index, and 4 derivatives

self.hashmap_offsets_table , self.n_params = self.determine_grids()

self.grid_params = np.full((self.n_params ,), fill_value=np.random.uniform(-1e-4, 1e-4), dtype=np.float32)

def determine_grids(self):

hashmap_offsets_table = np.empty((self.n_levels + 1,), dtype=np.float32)

offset = 0

max_params = np.Inf

for i in range(self.n_levels):

scale = math.pow(2, i * math.log2(self.scale)) * self.base_resolution - 1.0

to eliminate the floating point rounding

scale = round(scale, 10)

resolution = int(math.ceil(scale)) + 1

params_in_level = max_params if np.power(resolution , 2) > max_params else np.power(resolution , 2)

it is not allowed to exceed the hashmap size

params_in_level = min(params_in_level , self.hashmap_size)

params_in_level = next_multiple(params_in_level , 8)

hashmap_offsets_table[i] = offset

offset += params_in_level

hashmap_offsets_table[self.n_levels] = offset

n_params = int(hashmap_offsets_table[self.n_levels] * self.n_features)

return hashmap_offsets_table , n_params

def forward(self, xs_and_ys , num_elements , is_inference=False):

self.hashmap_offsets_table = cuda.to_device(self.hashmap_offsets_table)

self.grid_params = cuda.to_device(self.grid_params)

forward_output = cuda.device_array((num_elements * self.n_levels * self.n_features ,))

xs_and_ys = cuda.to_device(xs_and_ys)

execute this function for all pixels given xs_and_ys for each level.

threads_per_block = 512

x = div_round_up(num_elements , threads_per_block)

blocks_hash_grid = [x, self.n_levels, 1]

if is_inference:

41

backward_output = cuda.device_array(0)

_forward[blocks_hash_grid , threads_per_block](xs_and_ys , num_elements , self.hashmap_offsets_table ,

self.n_features , self.scale, self.base_resolution ,

self.grid_params , self.n_levels , forward_output ,

self.n_backward_contents , backward_output , 0)

else:

backward_output = cuda.device_array((num_elements * self.n_levels * self.n_backward_contents ,))

_forward[blocks_hash_grid , threads_per_block](xs_and_ys , num_elements , self.hashmap_offsets_table ,

self.n_features , self.scale, self.base_resolution ,

self.grid_params , self.n_levels , forward_output ,

self.n_backward_contents , backward_output , 1)

return forward_output , backward_output

def update_grid_params(self, num_elements , inputs_grad , encoding_backward_output):

"""

Backward processes.

"""

threads_per_block = 512

x = div_round_up(num_elements , threads_per_block)

blocks_hash_grid = [x, self.n_levels, 1]

inputs_grad = cuda.to_device(inputs_grad)

encoding_backward_output = cuda.to_device(encoding_backward_output)

sum_updated_grid_params = cuda.device_array((self.n_params ,))

calculates the sum of grids.

_sum_update_grid_params[blocks_hash_grid , threads_per_block](num_elements , inputs_grad ,

encoding_backward_output , self.n_features ,

sum_updated_grid_params)

updates the grid parameters.

threads_per_block = 512

x = div_round_up(self.n_params, threads_per_block)

blocks_hash_grid = [x, 1]

_update_grid_params[blocks_hash_grid , threads_per_block](self.n_params , sum_updated_grid_params , self.lr,

self.grid_params , self.n_features)

Listing A.1. encoding.py

import torch

import torch.nn as nn

from model_utils import determine_activation

torch.set_printoptions(precision=8)

class Network(nn.Module):

def __init__(self, activation_name , n_input, n_neurons , n_hidden_layers , n_output):

super().__init__()

self.activation = determine_activation(activation_name)

self.n_input = n_input

self.n_neurons = n_neurons

self.n_hidden_layers = n_hidden_layers

self.n_output = n_output

self.inputs = None # we add this variable for differentiation.

self.inputs_layer = nn.Linear(n_input, n_neurons , bias=False)

self.hidden_layers = nn.Sequential()

for _ in range(n_hidden_layers):

self.hidden_layers.append(nn.Linear(n_neurons , n_neurons , bias=False))

self.hidden_layers.append(self.activation)

self.output_layer = nn.Linear(n_neurons , n_output , bias=False)

def forward(self, x):

self.inputs = x

x = self.activation(self.inputs_layer(self.inputs))

x = self.hidden_layers(x)

42

x = self.output_layer(x)

return x[:, :3]

Listing A.2. network.py

import math

import torch

from numba import cuda

import numpy as np

import torch.nn as nn

def determine_activation(activation_name):

if activation_name == "ReLU":

return nn.ReLU()

else:

print(f"Activation is not defined! --> {activation_name}")

return None

def determine_optimizer(optimizer_type , network_params , learning_rate):

if optimizer_type == "Adam":

optimizer = torch.optim.Adam(network_params , lr=learning_rate)

else:

optimizer = None

print("Optimizer is None!!!")

return optimizer

def determine_criterion(loss_type):

if loss_type == "RelativeL2":

criterion = torch.nn.MSELoss()

else:

criterion = None

print("Loss function is None!!!")

return criterion

def calculate_xs_and_ys(width, height, n_coords_padded):

"""

For each pixel, we calculate x and y coordinates (+0.5 for truncating) and normalize them.

"""

xs_and_ys = np.zeros((n_coords_padded * 2,), dtype=np.float32)

for y in range(height):

for x in range(width):

idx = (y * width + x) * 2

xs_and_ys[idx] = float(x + 0.5) / float(width)

xs_and_ys[idx + 1] = float(y + 0.5) / float(height)

return xs_and_ys

def div_round_up(val, div):

return int(((val + div - 1) / div))

def next_multiple(val, div):

"""

For using GPU efficiently

"""

dru = div_round_up(val, div)

res = int(dru * div)

return res

@cuda.jit(inline=True)

def determine_xy0(xi, yi, width, height):

43

if xi < 0:

x0 = 0

elif xi > width - 1:

x0 = width - 1

else:

x0 = xi

if yi < 0:

y0 = 0

elif yi > height - 1:

y0 = height - 1

else:

y0 = yi

return int(x0), int(y0)

@cuda.jit(inline=True)

def determine_xy1(x0, y0, width, height):

if x0 + 1 < 0:

x1 = 0

elif x0 + 1 > width - 1:

x1 = width - 1

else:

x1 = x0 + 1

if y0 + 1 < 0:

y1 = 0

elif y0 + 1 > height - 1:

y1 = height - 1

else:

y1 = y0 + 1

return int(x1), int(y1)

@cuda.jit(inline=True)

def fast_hash(x, y, hashmap_size):

index = 0

index ^= x * 1

index ^= y * 2654435761

index = (index % hashmap_size)

return int(index)

@cuda.jit(inline=True)

def calculate_filter_mode_linear(o1, o2, o3, o4, lwx, lwy):

return (o1 * (1.0 - lwx) * (1.0 - lwy) +

o2 * lwx * (1.0 - lwy) +

o3 * (1.0 - lwx) * lwy +

o4 * lwx * lwy)

@cuda.jit

def relu(v):

if v > 0.0:

return v

else:

return 0.0

@cuda.jit()

def _forward(xs_and_ys , n_elements , hashmap_offsets_table , n_features , log2_per_level_scale , base_resolution ,

grid_params , n_levels, forward_output , n_backward_contents , backward_output , derivative):

i = cuda.blockIdx.x * cuda.blockDim.x + cuda.threadIdx.x

level = cuda.blockIdx.y # < - the level is the same for all threads

if i >= n_elements or level >= n_levels:

44

return

grid_index = int(hashmap_offsets_table[level] * n_features)

hashmap_size = int(hashmap_offsets_table[level + 1]) - int(hashmap_offsets_table[level])

scale = math.pow(2, level * math.log2(log2_per_level_scale)) * base_resolution - 1.0

scale = round(scale, 10)

resolution = int(math.ceil(scale)) + 1

pos_x = xs_and_ys[i * 2] * scale + 0.5

pos_y = xs_and_ys[i * 2 + 1] * scale + 0.5

pos_grid_x = math.floor(pos_x)

pos_grid_y = math.floor(pos_y)

lerp_weight_x = pos_x - pos_grid_x

lerp_weight_y = pos_y - pos_grid_y

x0, y0 = determine_xy0(pos_grid_x , pos_grid_y , resolution , resolution)

x1, y1 = determine_xy1(x0, y0, resolution , resolution)

i1 = x0 + y0 * resolution

i2 = x1 + y0 * resolution

i3 = x0 + y1 * resolution

i4 = x1 + y1 * resolution

if math.pow(resolution , 2) > hashmap_size:

i1 = fast_hash(x0, y0, hashmap_size)

i2 = fast_hash(x1, y0, hashmap_size)

i3 = fast_hash(x0, y1, hashmap_size)

i4 = fast_hash(x1, y1, hashmap_size)

for f in range(n_features):

g1 = grid_params[grid_index + (i1 * n_features) + f]

g2 = grid_params[grid_index + (i2 * n_features) + f]

g3 = grid_params[grid_index + (i3 * n_features) + f]

g4 = grid_params[grid_index + (i4 * n_features) + f]

features = calculate_filter_mode_linear(g1, g2, g3, g4, lerp_weight_x , lerp_weight_y)

forward_output[(i * n_features * n_levels) + (level * n_features) + f] = features

if derivative:

d1 = (1.0 - lerp_weight_x) * (1.0 - lerp_weight_y)

d2 = lerp_weight_x * (1.0 - lerp_weight_y)

d3 = (1.0 - lerp_weight_x) * lerp_weight_y

d4 = lerp_weight_x * lerp_weight_y

backward_output[(i * n_levels * n_backward_contents) + (level * n_backward_contents) + 0] = i1

backward_output[(i * n_levels * n_backward_contents) + (level * n_backward_contents) + 1] = i2

backward_output[(i * n_levels * n_backward_contents) + (level * n_backward_contents) + 2] = i3

backward_output[(i * n_levels * n_backward_contents) + (level * n_backward_contents) + 3] = i4

backward_output[(i * n_levels * n_backward_contents) + (level * n_backward_contents) + 4] = grid_index

backward_output[(i * n_levels * n_backward_contents) + (level * n_backward_contents) + 5] = d1

backward_output[(i * n_levels * n_backward_contents) + (level * n_backward_contents) + 6] = d2

backward_output[(i * n_levels * n_backward_contents) + (level * n_backward_contents) + 7] = d3

backward_output[(i * n_levels * n_backward_contents) + (level * n_backward_contents) + 8] = d4

@cuda.jit()

def _sum_update_grid_params(n_elements , inputs_grad , encoding_backward_output , n_features , sum_updated_grid_params):

i = cuda.blockIdx.x * cuda.blockDim.x + cuda.threadIdx.x

if i >= n_elements:

return

l = cuda.blockIdx.y

45

i1, i2, i3, i4, grid_index , d1, d2, d3, d4 = encoding_backward_output[i][l]

for f in range(n_features):

input_grad = inputs_grad[i][l * n_features + f]

sum_updated_grid_params[int(grid_index + (i1 * n_features) + f)] += input_grad * d1

sum_updated_grid_params[int(grid_index + (i2 * n_features) + f)] += input_grad * d2

sum_updated_grid_params[int(grid_index + (i3 * n_features) + f)] += input_grad * d3

sum_updated_grid_params[int(grid_index + (i4 * n_features) + f)] += input_grad * d4

@cuda.jit()

def _update_grid_params(n_elements , sum_updated_grid_params , lr, grid_params , n_features):

i = cuda.blockIdx.x * cuda.blockDim.x + cuda.threadIdx.x

if i >= n_elements:

return

grid_params[i] -= (sum_updated_grid_params[i] / n_features) * lr

Listing A.3. model_utils.py

import numpy as np

import torch

from image_utils import write_image

def determine_samples(batch_size , n_coords , img):

xs_and_ys_indices = []

gt = []

h, w = img.shape[:2]

for bi in range(batch_size):

r = np.random.randint(n_coords)

xs_and_ys_indices.append(r * 2)

xs_and_ys_indices.append(r * 2 + 1)

gt.append(img[int(r // w), int(r % w)])

return xs_and_ys_indices , np.asarray(gt)

class Trainer:

def __init__(self, encoding, network, optimizer , criterion , n_epochs ,

img, xs_and_ys , n_coords , batch_size , output_folder):

self.encoding = encoding

self.network = network

self.optimizer = optimizer

self.criterion = criterion

self.n_epochs = n_epochs

self.img = img

self.xs_and_ys = xs_and_ys

self.n_coords = n_coords

self.batch_size = 1 << batch_size

self.output_folder = output_folder

def train(self):

n_levels = self.encoding.n_levels

n_features = self.encoding.n_features

self.network.train().cuda()

we only select pixels as many as the number of batch size for each epoch.

for epoch in range(1, self.n_epochs+1):

ts = timer()

xs_and_ys_indices , gt = determine_samples(self.batch_size , self.n_coords , self.img)

inputs_xs_and_ys = self.xs_and_ys[xs_and_ys_indices]

encoding_forward_output , encoding_backward_output = self.encoding.forward(inputs_xs_and_ys , self.

batch_size)

encoding_forward_output = encoding_forward_output.copy_to_host()

encoding_backward_output = encoding_backward_output.copy_to_host()

reshape the outputs of the encoding to give them to the network.

46

encoding_forward_output = encoding_forward_output.reshape(-1, n_levels * n_features).astype(np.float32)

encoding_backward_output = encoding_backward_output.reshape(-1, n_levels , self.encoding.

n_backward_contents).astype(np.float32)

self.optimizer.zero_grad()

encoding_outputs = torch.from_numpy(encoding_forward_output).cuda()

gt = torch.from_numpy(gt).cuda()

to update the grid params, we need to derivatives of the input layer.

encoding_outputs.requires_grad = True

network_outputs = self.network(encoding_outputs)

loss = self.criterion(network_outputs , gt)

loss.backward()

inputs_grad = self.network.inputs.grad

backward for grids

self.encoding.update_grid_params(self.batch_size , inputs_grad , encoding_backward_output)

self.optimizer.step()

te = timer()

if epoch % 100 == 0:

print(f"Epoch {epoch} | # of samples: {self.batch_size} | Time: {te - ts: .2f}")

self.inference(name=str(epoch))

def inference(self, name=""):

n_levels = self.encoding.n_levels

n_features = self.encoding.n_features

h, w = self.img.shape[:2]

self.network.eval()

with torch.no_grad():

encoding_forward_outputs , _ = self.encoding.forward(self.xs_and_ys , self.n_coords , is_inference=True)

encoding_forward_outputs = encoding_forward_outputs.copy_to_host()

encoding_forward_outputs = encoding_forward_outputs.reshape(-1, n_levels * n_features).astype(np.float32)

encoding_outputs = torch.from_numpy(encoding_forward_outputs).cuda()

network_outputs = []

for b in range(0, encoding_outputs.size(0), self.batch_size):

network_output = self.network(encoding_outputs[b:b+self.batch_size])

network_outputs.append(network_output.cpu().detach().numpy())

network_outputs = np.concatenate(network_outputs , axis=0)

output_img = np.reshape(network_outputs , (h, w, 3))

write_image(f"{self.output_folder}/inference_{name}.jpg", output_img)

print("Inference is done.")

Listing A.4. train.py

47

APPENDIX B

PYTHON CODE FOR MULTI-FRAME

SUPER-RESOLUTIN WITHOUT PRIORS

import cv2

import numpy as np

from scipy.optimize import least_squares

sift = cv2.SIFT_create()

bf = cv2.BFMatcher()

def func(mat, x0, x1):

mat = np.reshape(mat, (2, 3))

x_prime = mat @ x0.T

return np.sum((x1 - x_prime.T)**2, axis=1)

def reject_outliers(data, m=6.):

d = np.abs(data - np.median(data))

mdev = np.median(d)

s = d / (mdev if mdev else 1.)

return data[s < m]

def cal_affine_matrix(img1, img2):

img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)

kps1, descs1 = sift.detectAndCompute(img1, None)

descs1 /= (descs1.sum(axis=1, keepdims=True) + 1e-7)

descs1 = np.sqrt(descs1)

img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)

kps2, descs2 = sift.detectAndCompute(img2, None)

descs2 /= (descs2.sum(axis=1, keepdims=True) + 1e-7)

descs2 = np.sqrt(descs2)

matches = bf.knnMatch(descs1, descs2, k=2)

slctd = []

rt = 0.2

for _ in range(6):

good = []

for m,n in matches:

if m.distance < (rt * n.distance):

good.append(m)

if len(good) < 10:

rt += 0.05

else:

slctd = [elem for elem in good]

break

if len(slctd) < 6:

raise Exception(f"Number of matched keypoints is {len(slctd)}, less than 6!")

matches = sorted(slctd, key=lambda x : x.distance)

m_kps1 = []

m_kps2 = []

for m in matches:

m1 = m.queryIdx

48

m2 = m.trainIdx

m_kps1.append(kps1[m1].pt)

m_kps2.append(kps2[m2].pt)

m_kps1 = np.asarray(m_kps1, dtype=np.float32)

m_kps2 = np.asarray(m_kps2, dtype=np.float32)

gets 3 keypoints having the minimum distance

warp_mat = cv2.getAffineTransform(m_kps2[:3], m_kps1[:3])

warp_mat = warp_mat.flatten()

n, _ = m_kps1.shape

ones = np.ones((n,1))

m_kps2 = np.hstack((m_kps2, ones))

warp_mat = least_squares(func, warp_mat, args=(m_kps2, m_kps1), method="lm")

warp_mat = np.reshape(warp_mat.x, (2, 3))

return warp_mat

Listing B.1. calculate_affine_matrix.py

import random

from tqdm import tqdm

import cv2

import numpy as np

import torch

from numba import cuda

from utils.image_utils import write_image

from utils.model_utils import div_round_up , _determine_input_samples_cuda , _determine_gt_samples_cuda

random.seed(42)

np.random.seed(42)

torch.manual_seed(42)

torch.cuda.manual_seed(42)

class Trainer:

def __init__(self, encoding, network, optimizer , criterion , n_epochs , xs_and_ys ,

n_coords , batch_size , scale_factor , width, height, imgs,

interpolation_type , result_dir_path):

self.interpolation_dict = {"bilinear": 0, "bicubic": 1}

self.encoding = encoding

self.network = network.cuda()

self.optimizer = optimizer

self.scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer , 100000, gamma=0.8)

self.criterion = criterion

self.n_epochs = n_epochs

self.imgs = imgs

self.interpolation_type = self.interpolation_dict[interpolation_type]

self.scale_factor = scale_factor

self.xs_and_ys = xs_and_ys

self.n_coords = n_coords

self.batch_size = 1 << batch_size

self.width = width

self.height = height

self.result_dir_path = result_dir_path

def train(self):

...

translated_random_coords_x = []

translated_random_coords_y = []

for img, t in self.imgs:

random_coords_y_ = np.full((encoding_outputs.size(0),), t[1])

49

random_coords_x_ = np.full((encoding_outputs.size(0),), t[0])

translated_random_coords_x.append(random_coords_x_)

translated_random_coords_y.append(random_coords_y_)

translated_random_coords_x = np.asarray(translated_random_coords_x , dtype=np.float32)

translated_random_coords_y = np.asarray(translated_random_coords_y , dtype=np.float32)

translated_random_coords_x = torch.from_numpy(translated_random_coords_x).cuda()

translated_random_coords_y = torch.from_numpy(translated_random_coords_y).cuda()

the outputs convolutions with size of batch

network_outputs = self.network(encoding_outputs , translated_random_coords_x , translated_random_coords_y , w, h)

gts_torch = []

for i, gt in enumerate(gts):

gt = gt.copy_to_host()

gt = gt.reshape(-1, 3).astype(np.float32)

gts_torch.append(gt)

gts_torch = np.asarray(gts_torch , dtype=np.float32)

gts_torch = torch.from_numpy(gts_torch).cuda()

relative_l2_error = torch.abs(gts_torch.to(network_outputs.dtype) - network_outputs) / (network_outputs.detach

() + 0.01)

loss = relative_l2_error.mean()

...

def inference(self, name=""):

...

center_x = torch.full((1, encoding_outputs.size(0)), 0.0).cuda()

center_y = torch.full((1, encoding_outputs.size(0)), 0.0).cuda()

network_output = self.network(encoding_outputs , center_x , center_y , w, h)

network_output = network_output.detach().cpu().numpy()[0]

...

def _determine_samples(self, random_coords):

for i in range(len(self.imgs) - 1):

assert self.imgs[i][0].shape == self.imgs[i+1][0].shape, "Source images must be the same dimensionality."

random_coords = cuda.to_device(random_coords)

h, w = self.imgs[0][0].shape[:2]

xs_and_ys = cuda.to_device(self.xs_and_ys)

inputs_xs_and_ys = cuda.device_array((self.batch_size * 2,))

threads_per_block = 32

x = div_round_up(self.batch_size , threads_per_block)

blocks_hash_grid = [x, 1]

_determine_input_samples_cuda[blocks_hash_grid , threads_per_block](self.batch_size , random_coords ,

xs_and_ys , inputs_xs_and_ys)

inputs_xs_and_ys = inputs_xs_and_ys.copy_to_host()

gts = []

for img, t in self.imgs:

gt = cuda.device_array((self.batch_size * 3))

img = cuda.to_device(img)

threads_per_block = 16

x = div_round_up(self.batch_size , threads_per_block)

blocks_hash_grid = [x, 1]

_determine_gt_samples_cuda[blocks_hash_grid , threads_per_block](self.batch_size , random_coords ,

self.scale_factor , w, h, gt, img, t[0], t

50

[1],

self.interpolation_type)

gt.copy_to_host()

gts.append(gt)

return inputs_xs_and_ys , gts

Listing B.2. sr_train.py

import math

import torch

import torch.nn as nn

from utils.model_utils import determine_activation , determine_xy0 , determine_xy1 , calculate_filter_mode_linear

import torch.nn.functional as F

torch.set_printoptions(precision=8)

torch.manual_seed(42)

torch.cuda.manual_seed(42)

class Bilinear(torch.autograd.Function):

@staticmethod

def forward(ctx, convs, ixs, iys, width, height):

n_imgs = ixs.size(0)

translation must be at most 0.5 or at least -0.5

ixs = (ixs + 0.5).clamp(0.0, 1.0)

iys = (iys + 0.5).clamp(0.0, 1.0)

pos_grid_x = torch.div(ixs, 1, rounding_mode="floor")

pos_grid_y = torch.div(iys, 1, rounding_mode="floor")

lwx = ixs - pos_grid_x

lwy = iys - pos_grid_y

b = convs[:, 0, 0, 0] * (1.0 - lwx) * (1.0 - lwy) + \

convs[:, 0, 0, 1] * lwx * (1.0 - lwy) + \

convs[:, 0, 1, 0] * (1.0 - lwx) * lwy + \

convs[:, 0, 1, 1] * lwx * lwy

g = convs[:, 1, 0, 0] * (1.0 - lwx) * (1.0 - lwy) + \

convs[:, 1, 0, 1] * lwx * (1.0 - lwy) + \

convs[:, 1, 1, 0] * (1.0 - lwx) * lwy + \

convs[:, 1, 1, 1] * lwx * lwy

r = convs[:, 2, 0, 0] * (1.0 - lwx) * (1.0 - lwy) + \

convs[:, 2, 0, 1] * lwx * (1.0 - lwy) + \

convs[:, 2, 1, 0] * (1.0 - lwx) * lwy + \

convs[:, 2, 1, 1] * lwx * lwy

results = torch.stack((b, g, r), -1)

w1 = (1.0 - lwx) * (1.0 - lwy)

w2 = lwx * (1.0 - lwy)

w3 = (1.0 - lwx) * lwy

w4 = lwx * lwy

w1 = torch.stack((w1, w1, w1), -1)

w2 = torch.stack((w2, w2, w2), -1)

w3 = torch.stack((w3, w3, w3), -1)

w4 = torch.stack((w4, w4, w4), -1)

w = torch.stack((w1, w2, w3, w4), -1).view(n_imgs, -1, 3, 2, 2)

ctx.save_for_backward(w)

return results

@staticmethod

51

def backward(ctx, grad_output):

"""

In the backward pass we receive a Tensor containing the gradient of the loss

with respect to the output, and we need to compute the gradient of the loss

with respect to the input.

"""

w, = ctx.saved_tensors

w[:, :, 0, 0, 0] = grad_output[:, :, 0] * w[:, :, 0, 0, 0]

w[:, :, 0, 0, 1] = grad_output[:, :, 0] * w[:, :, 0, 0, 1]

w[:, :, 0, 1, 0] = grad_output[:, :, 0] * w[:, :, 0, 1, 0]

w[:, :, 0, 1, 1] = grad_output[:, :, 0] * w[:, :, 0, 1, 1]

w[:, :, 1, 0, 0] = grad_output[:, :, 1] * w[:, :, 1, 0, 0]

w[:, :, 1, 0, 1] = grad_output[:, :, 1] * w[:, :, 1, 0, 1]

w[:, :, 1, 1, 0] = grad_output[:, :, 1] * w[:, :, 1, 1, 0]

w[:, :, 1, 1, 1] = grad_output[:, :, 1] * w[:, :, 1, 1, 1]

w[:, :, 2, 0, 0] = grad_output[:, :, 2] * w[:, :, 2, 0, 0]

w[:, :, 2, 0, 1] = grad_output[:, :, 2] * w[:, :, 2, 0, 1]

w[:, :, 2, 1, 0] = grad_output[:, :, 2] * w[:, :, 2, 1, 0]

w[:, :, 2, 1, 1] = grad_output[:, :, 2] * w[:, :, 2, 1, 1]

w = torch.sum(w, dim=0)

return w, None, None, None, None

class Network(nn.Module):

def __init__(self, activation_name , n_input, n_neurons , n_hidden_layers):

super().__init__()

self.activation = determine_activation(activation_name)

self.n_input = n_input

self.n_neurons = n_neurons

self.n_hidden_layers = n_hidden_layers

self.n_output = 2 * 2 * 3

self.inputs = None # we add this variable for differentiation.

self.inputs_layer = nn.Linear(n_input, n_neurons , bias=False)# bias=True)

self.hidden_layers = nn.Sequential()

#self.dropout = nn.Dropout(p=0.2)

for _ in range(n_hidden_layers):

self.hidden_layers.append(nn.Linear(n_neurons , n_neurons , bias=False))# bias=True)

self.hidden_layers.append(self.activation)

self.output_layer = nn.Linear(self.n_neurons , self.n_output , bias=False) # bias=True)

self.bilinear = Bilinear.apply

def forward(self, x, translated_batched_coords_x , translated_batched_coords_y , width, height):

self.inputs = x

x = self.inputs_layer(self.inputs)

x = self.activation(x)

x = self.hidden_layers(x)

x = self.output_layer(x)

x = self.activation(x)

convs = x.view(-1, 3, 2, 2)

results = self.bilinear(convs, translated_batched_coords_x , translated_batched_coords_y , width, height)

return results

Listing B.3. sr_network.py

...

@cuda.jit(inline=True)

def _determine_input_samples_cuda(batch_size , random_coords , xs_and_ys , inputs_xs_and_ys):

i = cuda.blockIdx.x * cuda.blockDim.x + cuda.threadIdx.x

if i >= batch_size:

return

52

r = random_coords[i]

inputs_xs_and_ys[i * 2] = xs_and_ys[r * 2]

inputs_xs_and_ys[i * 2 + 1] = xs_and_ys[r * 2 + 1]

@cuda.jit(inline=True)

def _determine_gt_samples_cuda(batch_size , random_coords , scale_factor , w, h, gt, img, tx, ty, interpolation_type):

i = cuda.blockIdx.x * cuda.blockDim.x + cuda.threadIdx.x

if i >= batch_size:

return

r = random_coords[i]

iy = (r // w)

ix = (r % w)

gt[i * 3 + 0] = img[iy][ix][0]

gt[i * 3 + 1] = img[iy][ix][1]

gt[i * 3 + 2] = img[iy][ix][2]

...

Listing B.4. sr_model_utils.py

53

APPENDIX C

ADDITIONAL RESULTS OF MULTI-FRAME

SUPER-RESOLUTION WITHOUT PRIORS

54

SR3[32] Bicubic Ours Reference

55

SR3[32] Bicubic Ours Reference

56

SR3[32] Bicubic Ours Reference

57

SR3[32] Bicubic Ours Reference

Figure C.1. The additional results of bicubic interpolation, SR3[32] and ours.

58

Bicubic Ours DeepRep[3] Reference

59

Bicubic Ours DeepRep[3] Reference

60

Bicubic Ours DeepRep[3] Reference

61

Bicubic Ours DeepRep[3] Reference

Figure C.2. The additional results of bicubic interpolation, DeepRep[3] and ours.

62

