Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/13781
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEyidoğan, Sadık-
dc.contributor.authorGöral, Haydar-
dc.contributor.authorKutlu, Mustafa Kutay-
dc.date.accessioned2023-10-03T07:15:32Z-
dc.date.available2023-10-03T07:15:32Z-
dc.date.issued2023-
dc.identifier.issn1071-5797-
dc.identifier.issn1090-2465-
dc.identifier.urihttps://doi.org/10.1016/j.ffa.2023.102264-
dc.identifier.urihttps://hdl.handle.net/11147/13781-
dc.description.abstractIn this note, we focus on how many arithmetic progressions we have in certain subsets of finite fields. For this purpose, we consider the sets Sp = {t2 : t & ISIN; Fp} and Cp = {t3 : t & ISIN; Fp}, and we use the results on Gauss and Kummer sums. We prove that for any integer k & GE; 3 and for an odd prime number p, the number of k-term arithmetic progressions in Sp is given by p2 2k + R, where and ck is a computable constant depending only on k. The proof also uses finite Fourier analysis and certain types of Weil estimates. Also, we obtain some formulas that give the exact number of arithmetic progressions of length  in the set Sp when  & ISIN; {3,4, 5} and p is an odd prime number. For  = 4, 5, our formulas are based on the number of points onen_US
dc.description.sponsorshipThis work is supported by the Scientific and Technological Research Council of Turkey (TUBITAK) with the project number 122F027, and it is carried out by the second author. We would like to thank Antonio Rojas-Leon for pointing out Theorem 2.12 to us. The authors would like to thank the referee for many valuable comments which immensely improved the quality of the manuscript.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofFinite Fields and their Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArithmetic progressionsen_US
dc.subjectSzemeredi's theoremen_US
dc.subjectArithmetic geometryen_US
dc.subjectWeil estimatesen_US
dc.subjectSato-Tate conjectureen_US
dc.titleArithmetic progressions in certain subsets of finite fieldsen_US
dc.typeArticleen_US
dc.authorid0000-0002-8814-6295-
dc.authorid0000-0001-5440-9934-
dc.institutionauthorGöral, Haydar-
dc.institutionauthorKutlu, Mustafa Kutay-
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.volume91en_US
dc.identifier.wosWOS:001047394600001en_US
dc.identifier.scopus2-s2.0-85165165273en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.ffa.2023.102264-
dc.authorscopusid57221391537-
dc.authorscopusid55616260000-
dc.authorscopusid58493640300-
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ3-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1-s2.0-S1071579723001065-main.pdf694.56 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

118
checked on Nov 18, 2024

Download(s)

42
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.