
Finite Fields and Their Applications 91 (2023) 102264
Contents lists available at ScienceDirect

Finite Fields and Their Applications

journal homepage: www.elsevier.com/locate/ffa

Arithmetic progressions in certain subsets of finite 

fields

Sadık Eyidoğan a,∗, Haydar Göral b, Mustafa Kutay Kutlu b

a Department of Mathematics, Faculty of Science, Çukurova University, 
01330 Adana, Turkey
b Department of Mathematics, Izmir Institute of Technology, 35430 Urla, Izmir, 
Turkey

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 February 2023
Received in revised form 30 April 
2023
Accepted 30 June 2023
Available online 20 July 2023
Communicated by Gary L. Mullen

MSC:
11B25
11T24

Keywords:
Arithmetic progressions
Szemerédi’s theorem
Arithmetic geometry
Weil estimates
Sato-Tate conjecture

In this note, we focus on how many arithmetic progressions 
we have in certain subsets of finite fields. For this purpose, we 
consider the sets Sp = {t2 : t ∈ Fp} and Cp = {t3 : t ∈ Fp}, 
and we use the results on Gauss and Kummer sums. We prove 
that for any integer k ≥ 3 and for an odd prime number p, 
the number of k-term arithmetic progressions in Sp is given 
by

p2

2k
+ R,

where

|R| ≤
(
k − 2

4
− k − 2

2k−1

)
· p 3

2 + ck · p

and ck is a computable constant depending only on k. The 
proof also uses finite Fourier analysis and certain types of 
Weil estimates. Also, we obtain some formulas that give the 
exact number of arithmetic progressions of length � in the 
set Sp when � ∈ {3, 4, 5} and p is an odd prime number. For 
� = 4, 5, our formulas are based on the number of points on 
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certain elliptic curves, and the error term is best possible due 
to the Sato-Tate conjecture.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

In 1927, van der Waerden [46] proved a celebrated theorem regarding the existence 
of arithmetic progressions in any partition of the positive integers with finitely many 
classes. This is one of the fundamental results of Ramsey theory, and this theorem 
has been strengthened in many different directions. In 1936, a strengthening of van 
der Waerden’s theorem was conjectured by Erdős and Turán [19], which states that 
any subset of positive integers with a positive upper density contains arbitrarily long 
arithmetic progressions. For a subset A of positive integers, its upper density is defined 
as

d̄(A) = lim sup
N→∞

|A ∩ {1, . . . , N} |
N

.

In 1953, this conjecture was confirmed by Roth [35] for arithmetic progressions of length 
three. Actually, his proof shows not only the conjecture is true for arithmetic progressions 
of length three, but it also provides an explicit upper bound for the largest size of a 
subset of {1, . . . , N} with no non-trivial arithmetic progressions of length three (which 
is denoted by r3 (N)). In 1969, Szemerédi [42] extended the aforementioned result to 
arithmetic progressions of length four, and then in 1975 he developed his combinatorial 
method to resolve the conjecture for arbitrarily long arithmetic progressions, see [43]. 
The affirmative answer to Erdős and Turán’s conjecture is now known as Szemerédi’s 
theorem, which is one of the cornerstones of additive combinatorics. There is also a 
finitary version of Szemerédi’s theorem which is equivalent to Szemerédi’s theorem itself. 
Let ε > 0, and let k be a positive integer. Then, there is some N(ε, k) such that if 
n ≥ N(ε, k), then any subset of {1, 2, . . . , n} with at least εn elements contains a k-
term arithmetic progression. The smallest such N(ε, k) is called the Szemerédi number 
denoted by S(ε, k).

A second proof of Szemerédi’s theorem was given by Furstenberg [20] using ergodic 
theory in 1977. Furstenberg’s proof was a major breakthrough in terms of both his tech-
niques, which gave rise to many natural generalizations of the theorem, for example the 
density version of the Hales-Jewett theorem [21] and the polynomial Szemerédi theorem 
[4]. Despite their depths and impacts, the proofs of Szemerédi and Furstenberg fail to 
give upper bounds for rk (N) (which is the largest size of a subset of {1, . . . , N} with 
no non-trivial k-term arithmetic progressions), since Szemerédi’s proof applies van der 
Waerden’s theorem and Furstenberg’s proof uses the axiom of choice.
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Gowers developed new Fourier analytic methods to reprove Szemerédi’s theorem for 
arithmetic progressions of length four [22] in 1998, and arbitrarily long arithmetic pro-
gressions [23] in 2001. In fact, he gave not only a proof of the full Szemerédi’s theorem 
but also a quantitative bound for rk (N).

As well as in the integers, Szemerédi-type problems have been extensively studied 
in subsets of finite fields. While much work has been done on the problem of whether 
subsets of finite fields contain arithmetic progressions, in this study we concentrate on 
how many arithmetic progressions we have in certain subsets of finite fields. Here, we 
consider the set Sp = {t2 : t ∈ Fp} and we obtain the exact asymptotic for the number 
of k-term arithmetic progressions in this set. Our approach relies on the estimation of 
character sums, which has been a recurrent topic in number theory. A typical exponential 
and character sum is of the form

T1 =
∑

(x1,...,xn)∈Fn
p

ψ(q(x1, ..., xn))

and

T2 =
∑

(x1,...,xn)∈Fn
p

χ(q(x1, ..., xn)),

where q(x1, ..., xn) ∈ Fp[x1, ..., xn] of degree d, ψ(x) is a non-trivial additive character 
and χ(x) is a non-trivial multiplicative character on the finite field Fp. The expectation 
is the estimate

|Ti| ≤ cpn/2, (1)

where c is a constant depending on n and the degree d of the polynomial q(x1, ..., xn), 
and this is sort of a randomness. The above estimation corresponds to the Riemann 
hypothesis in finite fields. The estimation (1) was first achieved by Hasse [25] for single-
variable smooth cubics and then generalized by Weil [48]. For each odd prime number p
and for each non-linear polynomial f ∈ Z[X], we denote the Weil sum by

s(f, p) =
∑
x∈Fp

ep (f(x)) ,

where ep(x) = e2πix/p. In 1948, Weil proved as a consequence of his work [48] in algebraic 
geometry that if p is an odd prime number and f ∈ Z[X] is a non-linear polynomial 
with f /∈ pZ[X], then we have

|s(f, p)| ≤ (deg f − 1) · √p.

The higher dimensional version for the estimation of the exponential sum T1 was 
obtained in the seminal works of Deligne [16,17] where he proved the Riemann hypothesis 
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for finite fields that was also conjectured by Weil. More precisely, Deligne [16] proved that 
if p does not divide d and if the homogeneous part qd with degree d of q defines a smooth 
hypersurface in Pn−1, then the expected estimation for T1 holds with c = (d − 1)n. 
Later on, Katz [28] proved the multiplicative version of Deligne’s result and obtained an 
estimation for the sum T2. In this article, our algebraic sets that we encounter are highly 
singular and this is why we need singular character sum estimations. An estimation of this 
type was proved by Rojas-León [33], extending the work of Katz. In a very recent work, 
Rojas-León [34] deduced an estimation for multi-variable multiplicative character sums, 
which extends the well-known estimates for both classical Jacobi sums and one-variable 
polynomial multiplicative character sums. The result of Rojas-León [34] will be crucial 
to prove our first theorem of this paper, and we obtain an asymptotic for the number 
of k-term arithmetic progressions (k-APs) in Sp with a better error term. Moreover, our 
error term is sharp and best possible when k ∈ {4, 5}, owing to the celebrated Sato-
Tate conjecture (a theorem now), see [3,8,24,45]. Observe that our estimate in the next 
theorem is reminiscent of the Riemann hypothesis in the sense of finite fields.

Theorem 1.1. Let k ≥ 4 be a positive integer and p > 3 be a prime number. The number 
of k-APs in Sp is given by

p2

2k + R,

where

|R| ≤
(
k − 2

4 − k − 2
2k−1

)
· p 3

2 + ck · p

and ck is an explicit computable constant depending only on k.

When we look at the historical process of the distribution of quadratic residues or 
counting quadratic residue patterns in finite fields, it is seen that it has been widely 
handled by different mathematicians. Over the past 100 years, for k ≥ 1 and an odd 
prime p > k, it has been desirable to count how many k-tuples of consecutive numbers 
a, a +1, . . . , a +k−1 in F×

p have predetermined quadratic residue or nonresidue behavior. 
For a choice of k signs ε1, . . . , εk ∈ {±1}, set

Np(ε1, . . . , εk) =
∣∣∣∣ {a ∈ F×

p :
(
a + i− 1

p

)
= εi for i = 1, . . . , k

} ∣∣∣∣,
where 

(
·
p

)
is the Legendre symbol. In 1896, Aladov [1] counted each quadratic residue 

patterns of length 2, and some quadratic residue patterns of length 3 in F×
p . In the 

1930s, Davenport [13,14] considered this counting problem for k ≥ 4. It was shown [27, 
Chapter 9] that for k signs ε1, . . . , εk ∈ {±1}, and an odd prime p > k,
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∣∣∣∣Np(ε1, . . . , εk) −
p

2k

∣∣∣∣ < (k − 1)√p + k

2 .

Moreover, quadratic residue patterns with gaps that are not necessarily consecutive was 
also counted: if p > k and c1, . . . , ck are distinct in Fp, the set{

a ∈ F×
p :

(
a + ci

p

)
= εi for i = 1, . . . , k

}
has a size Np, and it satisfies ∣∣∣∣Np −

p

2k

∣∣∣∣ < (k − 1)√p + k

2 .

See also [9]. When we fix εi = 1 for each i, this yields that the number of k-APs in Sp

is given by

p2

2k + H, (2)

where

|H| ≤ (k − 1) · p 3
2 + Ok(p).

In this case, it is seen that the estimate in Theorem 1.1 for the number of k-APs in Sp

has a better error term than that of (2).
In our following result, we obtain the formulas which give the exact number of non-

trivial arithmetic progressions of length 3 in the set Sp. Note that “non-trivial” means 
that the common difference of the arithmetic progression is not zero.

Proposition 1.2. Let p be an odd prime number. The number of non-trivial 3-APs in Sp

is given by the following table:

The formula The prime number p

1
8
(
p + 3

)(
p − 1

)
p ≡ 1 (mod 8)

1
8
(
p − 3

)(
p − 1

)
p ≡ 3 (mod 8)

1
8
(
p − 1

)(
p − 1

)
p ≡ 5 (mod 8)

1
8
(
p + 1

)(
p − 1

)
p ≡ 7 (mod 8)

A formula that determines the number of non-trivial 4-APs in Sp can be given in the 
following result, and it depends on the number of points on the elliptic curve

E : y2 = x(x + 3)(x + 4).
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Since we will use elliptic curves in some of our formulas, it would be necessary to point 
out that an important aspect of the study of elliptic curves is devising effective ways of 
counting points on the curve. There are several approaches to do so, and the algorithms 
devised have been proved to be useful tools in the study of various fields, see [29,38,39].

We also note that the error term in the following theorem is sharp.

Theorem 1.3. Let p > 3 be a prime number. The number of non-trivial 4-APs in Sp is 
given by the following formula:

(p + 1)4

16p2 + (p− 1)(5p + 1)
16p2 − p + 1

2

+ p− 1
16 ·

(
−1
p

)
·
(

2 ·
(
−6
p

)
+ 4 ·

(
−2
p

)
+ 2 ·

(
2
p

)
+ 2 ·

(
−3
p

)
+ 2

)
+ 1

16 ·
(
−1
p

)
· (p− 1) (#E(Fp) − p− 1) ,

where the elliptic curve E over Fp is defined by

E : y2 = x(x + 3)(x + 4),

and 
(

·
p

)
is the Legendre symbol. Moreover, the number of non-trivial 4-APs in Sp is 

given by

p2

16 + Rp,

where

|Rp| ≤
1
8 · p 3

2 + O(p),

and the error term Rp and the above coefficient 1
8 are best possible in the sense that 

O(p 3
2 ) cannot be replaced by a smaller function of p, and 1

8 cannot be replaced by a 
smaller constant.

The resulting formula for the number of 5-APs in Sp is quite long and involves more 
elliptic curves. The exact formula can be found in its proof.

Theorem 1.4. Let p > 3 be a prime number. There exist explicitly computable polynomials 
f ∈ Z[X], g ∈ Z[X1, X2, X3, X4] and hi ∈ Z[X1, X2] with deg f = 3, degX1

g = 3 and 
degX1

hi = 2 for i ∈ {1, 2, 3} such that the number of 5-APs in Sp is given by

(p + 1)5

32p3 + f(p)
32p3 +

g
(
p,

(
−1
p

)
,
(

2
p

)
,
(

3
p

))
32p2 +

3∑ hi

(
p,

(
−1
p

))
32p (#Ei(Fp) − p− 1) ,
i=1
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where the elliptic curve Ei over Fp is defined by

E1 : y2 = x(x + 3)(x + 4),

E2 : y2 = x(x + 4)(x + 6),

E3 : y2 = x(x + 8)(x + 9),

and 
(

·
p

)
is the Legendre symbol. Moreover, the number of 5-APs in Sp is given by

p2

32 + O(p 3
2 ),

and the error term is best possible in the sense that O(p 3
2 ) cannot be replaced by a smaller 

function of p.

Can we take our question above a step further, and give a formula that calculates the 
number of 3-APs in the set of cubes

Cp = {t3 : t ∈ Fp}

in Fp? In addition to our results which make use of Gauss sums for the number of non-
trivial 3-APs in Sp, we give the following result using Kummer sums for the number of 
non-trivial 3-APs in Cp.

Theorem 1.5. Let p be a prime number with p ≡ 1 (mod 3). Let Qp denote the number 
of non-trivial 3-APs in Cp. Then,

Qp = (p + 2)3

27p + p− 1
27p (pcp + 4p + 8) − p + 2

3 ,

where cp ∈ Z with cp = O(√p) is a computable constant which depends on p. If p is of 
the form u2 + 27v2 for some integers u and v with u ≡ 2 (mod 3), then

Qp = (p + 2)3

27p + p− 1
27p (2up + 12p + 8) − p + 2

3 .

In Table 1, using SageMath [36], we give the calculations of the formulas, we obtained 
in our theorems above, for some certain values. Note that if p �≡ 1 (mod 3), then Cp = Fp

and so Qp = p(p − 1).
Short Outline of the Paper: In the next section, we will give the basics of finite Fourier 

analysis and some fundamental theorems of arithmetic geometry and exponential sums 
that we will use frequently in the manuscript. Section 3 contains the proof of Theorem 1.1. 
In Section 4, we will prove Proposition 1.2. The proof of Theorem 1.3 and the proof of 
Theorem 1.4 are contained in Section 5 and Section 6, respectively. Section 7 consists 
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Table 1
The number of non-trivial 3 and 4-APs in Sp and Cp for prime numbers 
p between 20 and 50.

20 < p < 50 #3-APs in Sp #4-APs in Sp #3-APs in Cp

23 66 44 23×22
29 98 28 29×28
31 120 30 50
37 162 54 60
41 220 120 41×40
43 210 84 70
47 276 138 47×46

of the proof of Theorem 1.5. Finally, in Section 8, we will give some results concerning 
Salem sets and the Sárközy problem.

2. Preliminaries

In this paper, we make use of Fourier analysis on finite abelian groups. In particular, 
our main tool will be the Fourier transform of functions which are defined on the finite 
cyclic group ZN . Throughout this note, eN : ZN → C is defined as eN (x) = e2πix/N for 
any x ∈ ZN . This function has the following well-known property, which is known as 
orthogonality:

∑
m∈ZN

eN (mu) =
{

0 if u �= 0,
N if u = 0.

(3)

Given a function f : ZN → C, its Fourier transform f̂ at m ∈ ZN is defined by

f̂(m) = N−1
∑

x∈ZN

eN (−xm)f(x). (4)

Basically, the Fourier transform of f : ZN → C is another function that is defined 
as the average of the values f(x) multiplied by the corresponding roots of unity, namely 
eN (−xm), x ∈ ZN . It has numerous useful properties. Among them, the one we require 
is the inversion formula. The inversion formula states that with the above definition of 
the Fourier transform, we can recover f from its Fourier coefficients via the formula

f(x) =
∑

m∈ZN

eN (xm)f̂(m). (5)

This basic feature of the Fourier transform appears frequently in the proof of our 
results. Surely, there are much more practical properties of the Fourier transform. For 
more detailed information about Fourier analysis on ZN , one can consult [41].

In the following definition, we describe an arithmetic progression in Z.
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Definition 2.1 (Arithmetic progressions). An arithmetic progression of length k (k-AP) 
in Z is a sequence of k-integers such that each difference between two consecutive terms 
is the same constant.

We say that a set A ⊆ Z contains arbitrarily long arithmetic progressions if for any 
k ∈ N, there is a non-trivial k-AP in A. There are some distinctions between arithmetic 
progressions in Z and ZN . We define an arithmetic progression in ZN in the following 
way.

Definition 2.2. A k-term arithmetic progression in ZN , x0, x2, ..., xk−1, is a sequence of 
integers satisfying

2xi ≡ xi−1 + xi+1 (mod N),

for all i = 1, ..., k − 2.

The disadvantage is that arithmetic progressions in ZN are not necessarily arithmetic 
progressions in Z (they might “wrap around”). For instance, in Z102, {65, 100, 33} is a 
3-term arithmetic progression but not in Z. Nevertheless, there is a relation between 
lengths of arithmetic progressions in Z and ZN . The following proposition was stated 
by Bourgain without proof in [7]. Thus, we felt the need to prove this proposition.

Proposition 2.3. If there exists a non-trivial 
(
2k2 − 2k + 1

)
-AP in ZN , then there is a 

non-trivial arithmetic progression in Z of length k contained in this given arithmetic 
progression in ZN .

Proof. Let x1, x2, . . . , x2k2−2k+1 be a non-trivial 
(
2k2 − 2k + 1

)
-AP in ZN . Now, we 

divide the interval [0, N) into k disjoint parts

[0, N) =
k⋃

i=1

[
(i− 1)N

k
,
iN

k

)
.

By the pigeonhole principle, there exist an interval 
[

(i−1)N
k , iN

k

)
and a, b ∈ {1, . . . , k+1}

with a < b and i ∈ {1, . . . , k} such that

xa, xb ∈
[
(i− 1)N

k
,
iN

k

)
and xa �= xb :

0 N
k

(i−1)N
k

xa xb iN
k

(k−1)N
k

N

d̃ < N/k
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Note that after choosing the appropriate representation of the elements of the arithmetic 
progression on classes modulo N , we consider the elements as integers.

Hence, the set 
{
xa, xb, xa+2(b−a), . . . , xa+(2k−2)(b−a)

}
has the following properties:

• |xa+(i−1)(b−a) − xa+i(b−a)| = d̃ for i ∈ {1, 2, . . . , 2k − 2},
• a + (2k − 2) · (b− a) ≤ 2k2 − 2k + 1 for a, b ∈ {1, . . . , k + 1}.

It means that 
{
xa+i(b−a)

}2k−2
i=0 is an arithmetic progression on one of the intervals 

(−2N,N) and [0, 3N). Now, without loss of generality, we assume that 
{
xa+i(b−a)

}2k−2
i=0

is a (2k − 1)-AP on [0, 3N). If 
{
xa+i(b−a)

}2k−2
i=0 ∩ [2N, 3N) �= ∅, then there exists an 

arithmetic progression of length at least k on the intervals [N, 2N) since d̃ < N/k. For 
the other case, if 

{
xa+i(b−a)

}2k−2
i=0 ∩ [2N, 3N) = ∅, by the pigeonhole principle and as 

d̃ < N/k, there exists an arithmetic progression of length at least k on one of the intervals 
[0, N) and [N, 2N). Thus, we conclude that there exists a non-trivial k-AP in Z obtained 
from the k-AP on one of the intervals [0, N) and [N, 2N). �

The proposition above provides a way to connect ZN -progressions to Z-progressions. 
In particular, finding a 

(
2k2 − k + 1

)
-AP in ZN gives rise to the existence of a k-AP in 

{1, ..., N}. In the further parts of this note, we prove that there are long APs in some 
special subsets of ZN . Hence, if we lift those sets up to Z, that is to say, see them as a 
subset of Z, then we obtain Z-APs.

The characteristic function A(x) of a set A ⊆ ZN is defined as

A(x) =
{

1 if x ∈ A,

0 if x /∈ A.

We will often use the following lemma, which determines the number of k-APs in the set 
A ⊆ ZN .

Lemma 2.4. Let A be any subset of ZN and k ≥ 3. Then, the number of k-APs in the 
set A is

N2|A|k
Nk

+ H,

where

H =N2
∑

(x1,x2,...,xk−2) �=0

Â(x1) · · · Â(xk−2)Â(x1 + 2x2 + · · · + (k − 2)xk−2)

· Â(−2x1 − 3x2 − · · · − (k − 1)xk−2).
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Proof. Let A be any subset of ZN and k ≥ 3. Define

QN (t) = |{(y1, y2, . . . , yk) ∈ Ak : yi+1 − yi = t for i ∈ {1, . . . , k − 1}}|

as the number of k-term arithmetic progressions in A with common difference t.
So, the number of k-APs in A is equal to∑

t∈ZN

QN (t) =
∑

y1∈ZN

∑
t∈ZN

A(y1)A(y1 + t) · · ·A(y1 + (k − 1)t). (6)

If we use the Fourier inversion formula (5) for each of the terms in Equation (6), namely 
for

A(y1 + t), A(y1 + 2t), . . . , A(y1 + (k − 1)t),

we obtain the following sums which depend on the Fourier coefficients of A:∑
t∈ZN

QN (t) =
∑

y1,t∈ZN

A(y1)
∑

x0∈ZN

eN (x0(y1 + t))Â(x0)

· · ·
∑

xk−2∈ZN

eN (xk−2(y1 + (k − 1)t))Â(xk−2)

=
∑

(y1,x0,x1,...,xk−2)

A(y1)Â(x0) · · · Â(xk−2)eN (y1(x0 + x1 + · · · + xk−2))

·
∑
t∈ZN

eN (t(x0 + 2x1 + · · · + (k − 1)xk−2)).

By orthogonality, we have

∑
t∈ZN

eN (t(x0 + 2x1 + · · · + (k − 1)xk−2)) =
{
N if x0 + 2x1 + · · · + (k − 1)xk−2 = 0,
0 otherwise.

From this orthogonality relation, we obtain that∑
t∈ZN

QN (t) = N
∑

(y1,x1,x2,...,xk−2)

A(y1)Â(x1) · · · Â(xk−2)Â(−2x1 − · · · − (k − 1)xk−2)

· eN (y1(−x1 − 2x2 − · · · − (k − 2)xk−2)).

Then, one can conclude that∑
t∈ZN

QN (t) =N2
∑

x1,x2,...,xk−2

Â(x1) · · · Â(xk−2)Â(x1 + 2x2 + 3x3 + · · · + (k − 2)xk−2)

· Â(−2x1 − 3x2 − · · · − (k − 1)xk−2).
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We denote this again by

∑
t∈ZN

QN (t) = N2|A|k
Nk

+ H

where

H =N2
∑

(x1,x2,...,xk−2) �=0

Â(x1) · · · Â(xk−2)Â(x1 + 2x2 + · · · + (k − 2)xk−2)

· Â(−2x1 − 3x2 − · · · − (k − 1)xk−2),

and the proof is complete. �
Now, we introduce the notion of a Salem family. These are certain families of sets that 

lie in ZN . We call the sets in a Salem family as Salem sets. Lott [30] showed that it is 
possible to guarantee the existence of a 3-AP in Salem sets. In the last section, we will 
focus on the existence of long arithmetic progressions in Salem sets.

Definition 2.5 (Generalized Salem family). Let {AN}N∈B be a family of sets with AN ⊆
ZN and α ∈ (0, 1), where B ⊆ Z>0 is infinite. The family {AN}N∈B is said to be an 
α-Salem family, if there exists a constant C depending on α such that for all N ∈ B and 
all nonzero m ∈ ZN ,

|ÂN (m)| ≤ C ·N−1|AN |α,

and the constant C is called the α-Salem constant.

The definition of a Salem family is based on the magnitude of the values of its Fourier 
transform. For instance, for a positive integer n ≥ 2, one can consider

Ωn
p = {tn : t ∈ Fp},

and the sets {Ωn
p}p∈P constitute a 1

2 -Salem family, where P is the set of prime numbers. 
Proof of this can be obtained from [48]. Now, we continue to give the necessary back-
ground in order to prove our results and obtain some properties of the families {Sp}p∈P
and {Ωn

p}p∈P .

Definition 2.6. Let p be an odd prime number. An integer a which is not divisible by p
is said to be a quadratic residue modulo p if it is congruent to a perfect square modulo 
p and is a quadratic nonresidue modulo p otherwise. The Legendre symbol is a function 
of a and p and it is defined as
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(
a

p

)
=

⎧⎪⎪⎨⎪⎪⎩
1 if a is a quadratic residue modulo p,
−1 if a is a quadratic nonresidue modulo p,
0 if p | a.

Below we list three important properties of the Legendre symbol which will be fre-
quently used.

Proposition 2.7 ([32]). For integers b and c with p � b,

p−1∑
�=0

(
b� + c

p

)
= 0.

Proposition 2.8 ([32]). Let a, b and c be integers, and let p be an odd prime. Then

p−1∑
�=0

(
a�2 + b� + c

p

)
=

⎧⎨⎩−
(

a
p

)
if p �

(
b2 − 4ac

)
,(

a
p

)
(p− 1) if p |

(
b2 − 4ac

)
.

Remark 2.9. Let k be an odd positive integer and m ≥ 1. Let aij ∈ Fp for 1 ≤ i ≤ k and 
1 ≤ j ≤ m. Then

∑
x1,x2,...,xm∈Fp

(
a11x1 + · · · + a1mxm

p

)
· · ·

(
ak1x1 + · · · + akmxm

p

)
= 0.

This equation is quickly obtained by defining new variables yj = axj for a chosen a ∈ Fp

with 
(

a
p

)
= −1. This property will be used frequently without being specified in the 

following sections.

In 1924, Artin estimated the correctness of the following theorem on elliptic curves. 
However, Artin was not able to prove his estimate. In 1933, Hasse proved the estimate 
of Artin. Then, Weil generalized the result of Hasse, as we mentioned in the previous 
section. The following two theorems will play an important role in finding the number 
of arithmetic progressions of length 4 and 5 in Sp.

Theorem 2.10 (Hasse [47, Theorem 4.2]). Let E be an elliptic curve over the finite field 
Fp. Then, the order of E(Fp) satisfies

|p + 1 − #E(Fp)| ≤ 2√p.

Theorem 2.11 ([47, Theorem 4.14]). Let E be an elliptic curve defined by y2 = x3+Ax +B

over the finite field Fp where p is an odd prime. Then,

#E(Fp) = p + 1 +
∑ (

x3 + Ax + B

p

)
.

x∈Fp
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Let k ≥ 6 be a positive integer. When estimating the number of arithmetic progres-
sions of length k in Sp, we need a conclusion that yields more than Hasse’s theorem. 
In 2022, Rojas-León proved an estimate for multi-variable multiplicative character sums 
over affine subspaces of An

k , which generalizes the well-known estimates for both classical 
Jacobi sums and one-variable polynomial multiplicative character sums [34]. The follow-
ing theorem proved by Rojas-León is of fundamental importance in finding the number 
of arithmetic progressions of length k in Sp with a better error term.

Theorem 2.12 ([34, Corollary 2]). Let k = Fq be a finite field, with q = pa a prime power. 
Let χ1, . . . , χn : F×

q → C× be n non-trivial multiplicative characters. Let L1, . . . , Ln :
Ad

k → A1
k be affine linear forms, with Li(t) = ai,1t1 + · · ·+ai,dtd + bi, and let Vi ⊆ Ad

k be 
the hyperplane defined by Li(t) = 0. Suppose that the affine map Ad

k → An
k defined by the 

Li is injective (that is, that the matrix (aij) has rank d), and that for every I ⊆ {1, . . . , n}
with |I| ≤ d + 1 we have dim (∩i∈IVi) ≤ d − |I|. Then, we have the estimate∣∣∣∣∣∣

∑
t∈kd

χ1 (L1(t)) · · ·χn (Ln(t))

∣∣∣∣∣∣ ≤ DL · qd/2,

where

DL := (−1)d +
d∑

j=1
(−1)d+j

aj ,

and aj is the number of subsets I ⊆ {1, . . . , n} with |I| = j such that ∩i∈IVi �= ∅.

Observe that the algebraic sets occurring in the previous theorem are highly singular, 
so one cannot apply the results of [28] and [33] immediately. Although the character sum 
estimates are in the realm of analytic number theory, the technique behind them is the 
use of �-adic cohomology and Grothendieck’s trace formula, see also the works of Deligne 
[15,18].

Given that p and q are two distinct odd primes, suppose we know whether q is a 
quadratic residue of p or not. The natural question is as follows: will p be a quadratic 
residue of q? One of Gauss’ favorite theorems, which is the law of quadratic reciprocity 
answers this question. The law of quadratic reciprocity is a very deep theorem with over 
two hundred fifty proofs.

Proposition 2.13 ([6, Theorem 1.2.6] Law of quadratic reciprocity). Let p and q be two 
distinct odd prime numbers. Then,(

p

q

)
·
(
q

p

)
= (−1)

p−1
2 · q−1

2

holds.
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For an odd prime number p, an integer a and k ∈ Z>0, a general Gauss sum is defined 
as

Gk(a, p) =
p−1∑
m=0

ep(amk). (7)

When k = 1 and p � a, as mentioned before, the sum of all p-th roots of unity, which 
is a geometric sum and can be easily evaluated to be zero. When k ≥ 2, the task of 
determining the sum then becomes considerably more difficult. In fact, even for the 
initial case k = 2, it took Gauss several years to accomplish this. In late May of 1801, 
Gauss conjectured that

G2(1, p) =
{√

p if p ≡ 1 (mod 4),
i
√
p if p ≡ 3 (mod 4).

(8)

On August 30, 1805, Gauss wrote in his diary that he devoted some time to this problem 
every week for more than four years before he was able to prove his conjecture on the 
signs of these sums [5]. The sum G2(a, p) introduced by Gauss in 1801 is now called the 
quadratic Gauss sum.

Theorem 2.14 ([6, Theorem 1.5.2]). Let a be an integer not divisible by a prime p > 2. 
Then

G2(a, p) =
p−1∑
m=0

ep(am2) =
(
a

p

)
G2(1, p) =

⎧⎨⎩
(

a
p

)√
p if p ≡ 1 (mod 4),

i
(

a
p

)√
p if p ≡ 3 (mod 4).

We also recall Weil’s theorem from the introduction.

Theorem 2.15 ([48]). Let p be an odd prime number. Let f ∈ Z[X] be a non-linear 
polynomial such that f /∈ pZ[X]. We denote the Weil sum by

s(f, p) =
∑
x∈Fp

ep (f(x)) ,

where ep(x) = e2πix/p. Then, we have

|s(f, p)| ≤ (deg f − 1) · √p.

In additive number theory, another theorem that comes on the scene, which is in a 
similar spirit of Szemerédi’s theorem, is Sárközy’s theorem. Sárközy [37] and Furstenberg 
[20] independently proved the following result in the late 1970s, now commonly known 
as Sárközy’s theorem:
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Theorem 2.16 (Sárközy’s theorem, [37]). If A is a subset of positive integers with a 
positive upper density, then there are two distinct elements of A whose difference is a 
perfect square.

In the last section, we will get some results considering the generalized Sárközy prob-
lem for α-Salem families.

3. Proof of Theorem 1.1

Proof of Theorem 1.1. Let p > k be an odd prime number. Let

Qp(t) = |{(x1, . . . , xk) ∈ Sk
p | xi+1 − xi = t for i ∈ {1, . . . , k − 1}}| (9)

denote the number of k-term arithmetic progressions in Sp with common difference t. 
By Lemma 2.4, the number of k-APs in Sp is equal to

p2|Sp|k
pk

+ R,

where

R = p2
∑

(x1,x2,...,xk−2) �=0

Ŝp(x1) · · · Ŝp(xk−2)Ŝp(x1 + 2x2 + · · · + (k − 2)xk−2)

· Ŝp(−2x1 − 3x2 − · · · − (k − 1)xk−2).

Note that when 0 �= m ∈ Fp,

Ŝp(m) = 1
p

∑
x∈Fp

ep(−mx)Sp(x)

= 1
p

∑
x∈Sp

ep(−mx)

= 1
2p

⎛⎝∑
t∈Fp

ep(−mt2) + 1

⎞⎠
= 1

2p

(
ε

(
−m

p

)
√
p + 1

)
= 1

2p + 1
2√p

ε

(
−m

p

)
,

where
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ε =
{

1 if p ≡ 1 (mod 4)
i if p ≡ 3 (mod 4),

and Ŝp(0) = |Sp|
p

= p + 1
2p in case m = 0.

Next, we find the upper bound mentioned for the error term R. By the expression 
of R and the Fourier transform of Sp which were given above, it is sufficient to find an 
upper bound for the following expressions in forms A, B, C and D since they are the 
largest ones:

A = p2 ·
(
p + 1
2p

)k−2−m

· 1(
2√p

)m+2

∑
xa1 ,...,xam

(
−xa1

p

)
· · ·

(
−xam

p

)

·
(
−a1xa1 − · · · − amxam

p

)(
(a1 + 1)xa1 + · · · + (am + 1)xam

p

)
, (10)

B = p2 ·
(
p + 1
2p

)k−1−m

· 1(
2√p

)m+1

∑
xa1 ,...,xam

(a1+1)xa1+···+(am+1)xam=0

(
−xa1

p

)
· · ·

·
(
−xam

p

)(
−a1xa1 − · · · − amxam

p

)
, (11)

C = p2 ·
(
p + 1
2p

)k−1−m

· 1(
2√p

)m+1

∑
xa1 ,...,xam

−a1xa1−···−amxam=0

(
−xa1

p

)
· · ·

·
(
−xam

p

)(
(a1 + 1)xa1 + · · · + (am + 1)xam

p

)
, (12)

D = p2 ·
(
p + 1
2p

)k−m

· 1(
2√p

)m ∑
xa1 ,...,xam

−a1xa1−···−amxam=0
(a1+1)xa1+···+(am+1)xam=0

(
−xa1

p

)
· · ·

(
−xam

p

)
,

(13)

where ai ∈ {1, 2, . . . , k − 2} such that ai �= aj when i �= j, and m ∈ {2, . . . , k − 2}. Now, 
we observe that in case of m = 1, the equations from (10) to (13) are equal to zero. By 
the properties of the Legendre symbol, we get

∑
xa1

(
−xa1

p

)(
−a1xa1

p

)(
(a1 + 1)xa1

p

)
=

(
a1 (a1 + 1)

p

)∑
xa1

(
xa1

p

)
.

Then, it follows from orthogonality that(
a1 (a1 + 1)

p

)∑(
xa1

p

)
= 0.
xa1
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Thus, equation (10) is equal to zero. As a1 ∈ {1, 2, . . . , k − 2}, we also have

∑
xa1

(a1+1)xa1=0

(
−xa1

p

)(
−a1xa1

p

)
= 0.

Similarly, the other equations are shown to be equal to zero.
We first find the upper bound for (10). Since we cannot apply Theorem 2.12 imme-

diately to the sum, we bring the expressions to the appropriate forms. Using change 
of variables, namely xai

= xam
xai

for i ∈ {1, . . . ,m− 1}, and by the properties of the 
Legendre symbol, A above becomes

p2 · (p + 1)k−2−m

2k · pk−2−m · pm+2
2

· p
∑

xa1 ,...,xam−1

(
−xa1

p

)
· · ·

(−xam−1

p

)

·
(−a1xa1 − · · · − am−1xam−1 − am

p

)
·
( (a1 + 1)xa1 + · · · + (am−1 + 1)xam−1 + am + 1

p

)
. (14)

Now, we calculate (14) with the help of Theorem 2.12.
Take affine linear forms L1, . . . , Lm+1 : Am−1

k → A1
k as

L1(x) = −1 · xa1

L2(x) = −1 · xa2

...

Lm−1(x) = −1 · xam−1

Lm(x) = −a1 · xa1 + · · · + −am−1 · xam−1 − am

Lm+1(x) = (a1 + 1) · xa1 + · · · + (am−1 + 1) · xam−1 + (am + 1) .

The affine map defined by Li is injective since the matrix (aij) has rank m − 1. Now, 
let Vi ⊆ Am−1

k be the hyperplane defined by Li(x) = 0 for each i ∈ {1, . . . ,m + 1}, and 
I ⊂ {1, . . . ,m + 1} be a subset with |I| ≤ m. When |I| = m,⋂

i∈I

Vi = ∅,

that is to say dim (∩i∈IVi) = −1. When |I| ≤ m − 1,

dim
(⋂

Vi

)
≤ m− 1 − |I|
i∈I
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holds since the intersections of the hyperplanes Vi do not coincide with themselves. 
Hence, by applying Theorem 2.12, we get the following inequality

|A| ≤ 1
2k ·DL · p 3

2 + Ok(p
1
2 ), (15)

where

DL := (−1)m−1 +
m−1∑
j=1

(−1)m−1+jcj

and cj is the number of subsets I ⊂ {1, . . . ,m + 1} with |I| = j such that⋂
i∈I

Vi �= ∅.

Notice that

cj =
(
m + 1

j

)
when j ∈ {1, ..., m − 1}. Using the well-known identity

m+1∑
j=0

(−1)j
(
m + 1

j

)
= 0,

the value DL becomes

(−1)m−1 +
m−1∑
j=1

(−1)m−1+j

(
m + 1

j

)
= (−1)m−1 + (−1)m(1 + (−1)m(m + 1) + (−1)m+1) = m. (16)

Therefore, (15) and the previous equality yield that

|A| ≤ 1
2k ·m · p 3

2 + Ok(p
1
2 ).

Now, we rewrite the other forms and bring them to the form A. Note that the prop-
erties of the Legendre symbol and change of variables will be used again. If we arrange 
the indices on (11) and (12) using

(a1 + 1)xa1 + · · · + (am + 1)xam
= 0 and − a1xa1 − · · · − amxam

= 0,

we get the following sums:
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p2 · (p + 1)k−1−m

2k · pk−1−m · pm+1
2

∑
xa1 ,...,xam−1

(
−xa1

p

)
· · ·

(−xam−1

p

)

·
( (a1 + 1)xa1 + · · · + (am−1 + 1)xam−1

p

)
·
( (am − a1)xa1 + · · · + (am − am−1)xam−1

p

)
, (17)

p2 · (p + 1)k−1−m

2k · pk−1−m · pm+1
2

∑
xa1 ,...,xam−1

(
−xa1

p

)
· · ·

(−xam−1

p

)

·
(
a1xa1 + · · · + am−1xam−1

p

)( (am − a1)xa1 + · · · + (am − am−1)xam−1

p

)
.

(18)

Similarly, if the same method as in form A is applied for (17) and (18), we get

|B| ≤ m

2k · p 3
2 + Ok(p

1
2 ), (19)

|C| ≤ m

2k · p 3
2 + Ok(p

1
2 ). (20)

If we first use −a1xa1 − · · · − amxam
= 0 to rewrite the indices of the form D, we get 

the following sum in order to find the upper bound for (13):

p2 · (p + 1)k−m

2k · pk−m · pm
2

∑
xa1 ,...,xam−1(

1−a−1
m a1

)
xa1+···+

(
1−a−1

m am−1
)
xam−1=0

(
−xa1

p

)
· · ·

(−xam−1

p

)
(21)

·
(
a1xa1 + · · · + am−1xam−1

p

)
.

Then, again if the same method is used as in forms B and C, we deduce that

|D| ≤ m

2k · p 3
2 + Ok(p

1
2 ). (22)

There can be at most 2k−2 expressions for (10), (11), (12) and (13) in the error term 
R. We also know that half of these expressions are zero by Remark 2.9. Thus, we deduce 
the upper bound for R as

|R| ≤ 2 ·
k−2∑
m=2

(
k − 2
m

)
· m2k · p 3

2 + Ok(p) =
(
k − 2

4 − k − 2
2k−1

)
· p 3

2 + Ok(p)

using the equality

k−2∑ (
k − 2
m

)
·m =

k−2∑ (
k − 2
m

)
·m− (k − 2) = (k − 2) · 2k−3 − (k − 2).
m=2 m=1
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Moreover, if the sums for the error term contributing to p are determined and calculated, 
as in our proof, the constant ck can be found explicitly. �
An Application of Theorem 1.1 Let {Spi

}i∈N be a sequence of sets such that p1 = 5 and 
pi is a prime number. This time, we consider Spi

as a subset of {1, . . . , pi} ⊂ N. Let us 
make an assumption for now. Assume that when i > j ≥ 1,

Spi
∩ {1, 2, . . . , pj} = Spj

.

Let us define

A =
⋃
i≥1

Spi
.

Claim: The set A contains arbitrarily long arithmetic progressions.

Proof. Let k ≥ 3 be a positive integer. By Theorem 1.1, for a sufficiently large prime 
number pi, the set Spi

contains non-trivial arithmetic progressions of length 2k2 − 2k +
1 modulo pi. It follows from Proposition 2.3 that Spi

contains non-trivial arithmetic 
progressions of length k in Z. Hence, A contains arbitrarily long arithmetic progressions. 
(Thus, we proved the claim without using Szemerédi’s theorem.) �

Now, let us prove the above assumption, namely the existence of such sequences.

Proposition 3.1. Let q be a prime number such that q ≡ 5 (mod 8) and Sq be the 
set of quadratic residues modulo q, that is Sq = {k ∈ {1, 2, . . . , q} : x2 ≡ k

(mod q) for some x}. Then, there exists a prime number p > q such that p ≡ 5 (mod 8)
with

Sp ∩ {1, 2, . . . , q} = Sq.

Proof. Let q be a prime number such that q ≡ 5 (mod 8). Now, let us divide the primes 
in {1, 2, . . . , q} into two sets according to be quadratic or quadratic nonresidue modulo q. 

Let p1, . . . , pk ∈ {1, 2, . . . , q} be the list of primes where 
(
pi
q

)
= 1 and 2 = q1, . . . , qr ∈

{1, 2, . . . , q} be the list of primes where 
(
qi
q

)
= −1.

For i ∈ {2, . . . , r}, choose ai ∈ {1, . . . , qi} such that 
(
ai
qi

)
= −1. Consider the follow-

ing congruences:

X ≡ 5 (mod 8),

X ≡ 1 (mod pi), for each i ∈ {1, 2, . . . , k} ,
X ≡ ai (mod qi), for each i ∈ {2, 3, . . . , r} .
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By Chinese Remainder theorem, the solution set is an arithmetic progression

(a + n · 8p1 · · · pkq2 · · · qr)n ,

where 0 ≤ a < 8p1 · · · pkq2 · · · qr. Moreover, gcd(a, 8p1 · · · pkq2 · · · qr) = 1. Recall Dirich-
let’s theorem on arithmetic progressions [2, Theorem 7.9], which states that if a and �
are relatively prime positive integers, then there are infinitely many primes of the form 
a + n� with n ∈ N. By Dirichlet’s theorem, the above arithmetic progression contains a 
prime number, say p > q. Combining the law of quadratic reciprocity and p ≡ 5 (mod 8), 
we obtain that for any odd prime s,(p

s

)
·
(
s

p

)
= (−1)

p−1
2 · s−1

2 = 1.

Thus, 
(p
s

)
= 1 if and only if 

(
s

p

)
= 1. As 

(
p

pi

)
=

(
1
pi

)
= 1 for each i ∈ {1, 2, . . . , k}, 

we get 
(
pi
p

)
= 1. Similarly, as 

(
p

qi

)
=

(
ai
qi

)
= −1 for each i ∈ {2, 3, . . . , r}, we have (

qi
p

)
= −1. Also, as p ≡ 5 (mod 8), we obtain that 

(
2
p

)
= −1. This completes the 

proof. �
4. Some applications of quadratic Gauss sums

In this section, we prove Proposition 1.2 using quadratic Gauss sums.

Proof of Proposition 1.2. Let p be an odd prime. Let

Qp(t) = |{(x, y, z) ∈ S3
p | y − x = z − y = t}| (23)

denote the number of 3-term arithmetic progressions in Sp with common difference t.
By Lemma 2.4, we have that

∑
t∈Fp

Qp(t) = p2|Sp|3
p3 + p2

∑
� �=0

Ŝp(�)Ŝp(�)Ŝp(−2�). (24)

Recall that when 0 �= m ∈ Fp,

Ŝp(m) = 1
2p + 1

2√p
ε

(
−m

p

)
,

where

ε =
{

1 if p ≡ 1 (mod 4),
i if p ≡ 3 (mod 4).
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Using 
∑
� �=0

(
�

p

)
= 0, we conclude that

p2
∑
� �=0

Ŝp(�)Ŝp(�)Ŝp(−2�) = p2
∑
� �=0

(
1
2p

(
1 + ε

(
−�

p

)
√
p

))2 ( 1
2p

(
1 + ε

(
2�
p

)
√
p

))

= 1
8p

∑
� �=0

(
2ε2p

(
−2
p

)
+ ε2p + 1

)
.

Note that

(
−1
p

)
= (−1)

p−1
2 =

{
1 if p ≡ 1 (mod 4),
−1 if p ≡ 3 (mod 4)

(25)

and

(
2
p

)
= (−1)

p2−1
8 =

{
1 if p ≡ 1 or 7 (mod 8),
−1 if p ≡ 3 or 5 (mod 8).

(26)

When we assume p ≡ 1 (mod 8), it follows from equations (25) and (26) that

p2
∑
� �=0

Ŝp(�)Ŝp(�)Ŝp(−2�) = 1
8p (3p + 1) (p− 1).

Hence, we find that the number of non-trivial 3-APs in Sp is

∑
t∈Zp

QN (t) − |Sp| =
(
p2

(
p + 1
2p

)3

+ (p− 1) (3p + 1)
8p

)
−

(
p + 1

2

)

= (p− 1)(p + 3)
8 .

In addition, if the processes are done by considering, respectively, conditions p ≡ 3
(mod 8), p ≡ 5 (mod 8) and p ≡ 7 (mod 8) in the same way, we obtain the following 
formulas

(p− 1)(p− 3)
8 ,

(p− 1)(p− 1)
8 and (p− 1)(p + 1)

8 . �
The above proposition actually gives the number of non-trivial solutions of the Dio-

phantine congruence x2+y2 ≡ 2z2 (mod p). Now, we consider this situation from another 
perspective. When we look at the significant developments on arithmetic progressions 
in recent years, it can be seen that the Diophantine equation xn + yn = 2zn has no 
non-trivial primitive solutions in Z>0 when n ≥ 3, and this was proved by Darmon and 
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Merel [11]. An integer solution (x, y, z) is called primitive if gcd(x, y, z) = 1. In con-
trast to the Darmon-Merel Theorem, we will observe that for n ≥ 3, the congruence 
xn + yn ≡ 2zn (mod p) has a non-trivial solution when p is a sufficiently large prime 
number. In order to get this observation, it is enough to show that there exist non-trivial 
arithmetic progressions of length 3 in Ωn

p = {xn : x ∈ Fp}, and this can be achieved by 
van der Waerden’s theorem [46].

Remark 4.1. For n ≥ 3, Ωn
p = {xn : x ∈ Fp} contains non-trivial arithmetic progressions 

of length 3 when p is a sufficiently large prime number.

Proof. Let m =
∣∣F×

p /
(
F×
p

)n∣∣. Note that 1 ≤ m ≤ n. Let {g1, g2, . . . , gm} be a set of 
representatives of F×

p / 
(
F×
p

)n, in other words

F×
p =

m

i=1

gi
(
F×
p

)n
.

Define a coloring ψ of {1, 2, . . . , p− 1} by m-many colors as follows. For each a ∈
{1, 2, . . . , p− 1}, there is a unique gi such that a ∈ gi

(
F×
p

)n. Set ψ(a) = i. By van 
der Waerden’s theorem [46], if p is large enough, there are distinct elements x, y, z ∈ F×

p

such that

x + y = 2z and ψ(x) = ψ(y) = ψ(z) = i.

As we can write x = gix
n
1 , y = giy

n
1 , z = giz

n
1 , we obtain nonzero distinct elements 

xn
1 , y

n
1 , z

n
1 ∈

(
F×
p

)n = Ωn
p \ {0} such that xn

1 + yn1 = 2zn1 . �
5. Proof of Theorem 1.3

First, let us calculate the sums specified in the following lemma, which we will need 
in the proofs of Theorem 1.3 and Theorem 1.4.

Lemma 5.1. Let p > 3 be a prime number and for nonzero m ∈ Fp,

Ŝp(m) = 1
2p + 1

2√p
ε

(
−m

p

)
,

where

ε =
{

1 if p ≡ 1 (mod 4),
i if p ≡ 3 (mod 4).

Then, for a, b, c, d ∈ Fp with abcd(ad − bc) �= 0, we have
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(I)
∑
m�=0

Ŝp(m)Ŝp(am)Ŝp(bm) =
(

1
8p3 + 1

8p2 ε
2
((

a

p

)
+

(
b

p

)
+

(
ab

p

)))
(p− 1).

(II)
∑

cm1+dm2 �=0
am1+bm2=0
m2 �=0, m1 �=0

Ŝp(m1)Ŝp(m2)Ŝp(cm1 + dm2)

=
(

1
8p3 + 1

8p2 ε
2
((

−ab

p

)
+

(
b(bc− ad)

p

)
+

(
−a(bc− ad)

p

)))
(p− 1) .

(III)
∑

cm1+dm2 �=0
am1+bm2 �=0
m2 �=0, m1 �=0

Ŝp(m1)Ŝp(m2)Ŝp(am1 + bm2)Ŝp(cm1 + dm2)

= (p− 1)(p− 3)
16p4 + 1

16p2 (p− 1)
(
−1
p

)
(#E(Fp) − p− 1)

− 1
16p3 ε

2
((

a

p

)
+

(
b

p

)
+

(
c

p

)
+

(
d

p

))
(p− 1)

− 1
16p3 ε

2
((

a · (ad− bc)
p

)
+

(
d · (ad− bc)

p

))
(p− 1)

− 1
16p3 ε

2
((

−b · (ad− bc)
p

)
+

(
−c · (ad− bc)

p

))
(p− 1)

− 1
16p3 ε

2
((

−ab

p

)
+

(
−cd

p

)
+

(
ac

p

)
+

(
bd

p

))
(p− 1)

where the elliptic curve E over Fp is defined by

E : y2 = x(x− bc)(x− ad).

Proof. (I). As ab �= 0, we see that∑
m�=0

Ŝp(m)Ŝp(am)Ŝp(bm)

=
∑
m�=0

(
1
2p + 1

2√p
ε

(
−m

p

))(
1
2p + 1

2√p
ε

(
−am

p

))(
1
2p + 1

2√p
ε

(
−bm

p

))
.

Since we know that the sum of product of terms containing an odd number of Legendre 
symbols is zero, we just need to calculate the product of terms containing an even number 
of Legendre symbols. Thus, we obtain that

∑
m�=0

Ŝp(m)Ŝp(am)Ŝp(bm) =
∑
m�=0

(
1

8p3 + 1
8p2 ε

2
((

ab

p

)
+

(
a

p

)
+

(
b

p

)))

=
(

1
8p3 + 1

8p2 ε
2
((

ab

p

)
+

(
a

p

)
+

(
b

p

)))
(p− 1).
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(II). Since am1 + bm2 = 0, we have∑
cm1+dm2 �=0
am1+bm2=0
m2 �=0, m1 �=0

Ŝp(m1)Ŝp(m2)Ŝp(cm1+dm2) =
∑
m1 �=0

Ŝp(m1)Ŝp(−b−1am1)Ŝp((c−db−1a)m1).

Then, by (I) the desired equality is obtained.
(III). Now, let us calculate the last sum:∑

cm1+dm2 �=0
am1+bm2 �=0
m2 �=0, m1 �=0

Ŝp(m1)Ŝp(m2)Ŝp(am1 + bm2)Ŝp(cm1 + dm2) = T (1) + T (2) + T (3) + T (4),

where

T (1) =
∑

cm1+dm2 �=0
am1+bm2 �=0
m2 �=0, m1 �=0

1
16p3 ε

2
(
−m1

p

)(
−cm1 − dm2

p

)
(27)

+
∑

cm1+dm2 �=0
am1+bm2 �=0
m2 �=0, m1 �=0

1
16p3 ε

2
(
−m1

p

)(
−am1 − bm2

p

)
(28)

+
∑

cm1+dm2 �=0
am1+bm2 �=0
m2 �=0, m1 �=0

1
16p3 ε

2
(
−m2

p

)(
−cm1 − dm2

p

)
(29)

+
∑

cm1+dm2 �=0
am1+bm2 �=0
m2 �=0, m1 �=0

1
16p3 ε

2
(
−m2

p

)(
−am1 − bm2

p

)
(30)

+
∑

cm1+dm2 �=0
am1+bm2 �=0
m2 �=0, m1 �=0

1
16p3 ε

2
(
−am1 − bm2

p

)(
−cm1 − dm2

p

)
(31)

+
∑

cm1+dm2 �=0
am1+bm2 �=0
m2 �=0, m1 �=0

1
16p3 ε

2
(
−m1

p

)(
−m2

p

)
, (32)

T (2) =
∑

cm1+dm2 �=0
am1+bm2 �=0
m2 �=0, m1 �=0

1
16p4 (33)

+
∑

cm1+dm2 �=0
am1+bm2 �=0
m2 �=0, m1 �=0

1
16p2

(
−m1

p

)(
−m2

p

)(
−am1 − bm2

p

)(
−cm1 − dm2

p

)
, (34)
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T (3) =
∑

cm1+dm2 �=0
am1+bm2 �=0
m2 �=0, m1 �=0

1
16p7/2 ε

(
−m1

p

)
(35)

+
∑

cm1+dm2 �=0
am1+bm2 �=0
m2 �=0, m1 �=0

1
16p7/2 ε

(
−m2

p

)
(36)

+
∑

cm1+dm2 �=0
am1+bm2 �=0
m2 �=0, m1 �=0

1
16p7/2 ε

(
−cm1 − dm2

p

)
(37)

+
∑

cm1+dm2 �=0
am1+bm2 �=0
m2 �=0, m1 �=0

1
16p7/2 ε

(
−am1 − bm2

p

)
, (38)

T (4) =
∑

cm1+dm2 �=0
am1+bm2 �=0
m2 �=0, m1 �=0

1
16p5/2 ε

3
(
−m1

p

)(
−m2

p

)(
−cm1 − dm2

p

)
(39)

+
∑

cm1+dm2 �=0
am1+bm2 �=0
m2 �=0, m1 �=0

1
16p5/2 ε

3
(
−m1

p

)(
−m2

p

)(
−am1 − bm2

p

)
(40)

+
∑

cm1+dm2 �=0
am1+bm2 �=0
m2 �=0, m1 �=0

1
16p5/2 ε

3
(
−m1

p

)(
−am1 − bm2

p

)(
−cm1 − dm2

p

)
(41)

+
∑

cm1+dm2 �=0
am1+bm2 �=0
m2 �=0, m1 �=0

1
16p5/2 ε

3
(
−m2

p

)(
−am1 − bm2

p

)(
−cm1 − dm2

p

)
. (42)

We start by calculating (27). First, we edit the index of the sum by the inclusion-
exclusion principle:

∑
cm1+dm2 �=0
am1+bm2 �=0
m2 �=0, m1 �=0

1
16p3 ε

2
(
−m1

p

)(
−cm1 − dm2

p

)

=
∑

m2 �=0,m1 �=0

1
16p3 ε

2
(
−m1

p

)(
−cm1 − dm2

p

)

−
∑

cm1+dm2=0
am1+bm2 �=0

1
16p3 ε

2
(
−m1

p

)(
−cm1 − dm2

p

)

m2 �=0, m1 �=0
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−
∑

cm1+dm2 �=0
am1+bm2=0
m2 �=0, m1 �=0

1
16p3 ε

2
(
−m1

p

)(
−cm1 − dm2

p

)
. (43)

Then, by Proposition 2.8 or by a change of variable, we obtain that∑
cm1+dm2 �=0
am1+bm2 �=0
m2 �=0, m1 �=0

1
16p3 ε

2
(
−m1

p

)(
−cm1 − dm2

p

)

= − 1
16p3 ε

2
((

c

p

)
+

(
−b · (ad− bc)

p

))
(p− 1) . (44)

By arranging the coefficients in equation (44), we calculate (28), (29) and (30), re-
spectively: ∑

cm1+dm2 �=0
am1+bm2 �=0
m2 �=0, m1 �=0

1
16p3 ε

2
(
−m1

p

)(
−am1 − bm2

p

)

= − 1
16p3 ε

2
((

a

p

)
+

(
d · (ad− bc)

p

))
(p− 1) ,

∑
cm1+dm2 �=0
am1+bm2 �=0
m2 �=0, m1 �=0

1
16p3 ε

2
(
−m2

p

)(
−cm1 − dm2

p

)

= − 1
16p3 ε

2
((

d

p

)
+

(
a · (ad− bc)

p

))
(p− 1) ,

∑
cm1+dm2 �=0
am1+bm2 �=0
m2 �=0, m1 �=0

1
16p3 ε

2
(
−m2

p

)(
−am1 − bm2

p

)

= − 1
16p3 ε

2
((

b

p

)
+

(
−c · (ad− bc)

p

))
(p− 1) .

If the same method in (43) is applied for (31) and (32), then we deduce that∑
cm1+dm2 �=0
am1+bm2 �=0
m2 �=0, m1 �=0

1
16p3 ε

2
(
−am1 − bm2

p

)(
−cm1 − dm2

p

)

= − 1
16p3 ε

2
((

ac

p

)
+

(
bd

p

))
(p− 1) ,

∑
cm1+dm2 �=0
am1+bm2 �=0

1
16p3 ε

2
(
−m1

p

)(
−m2

p

)
= − 1

16p3 ε
2
((

−ab

p

)
+

(
−cd

p

))
(p− 1) .
m2 �=0, m1 �=0
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Also, it is quickly obtained that

∑
cm1+dm2 �=0
am1+bm2 �=0
m2 �=0, m1 �=0

1
16p4 = (p− 1)(p− 3)

16p4 .

Now, we compute (34) with the help of Theorem 2.11. Observe that

∑
cm1+dm2 �=0
am1+bm2 �=0
m2 �=0, m1 �=0

1
16p2

(
−m1

p

)(
−m2

p

)(
−am1 − bm2

p

)(
−cm1 − dm2

p

)

=
∑

m2 �=0,m1 �=0

1
16p2

(
−m1

p

)(
−m2

p

)(
−am1 − bm2

p

)(
−cm1 − dm2

p

)
. (45)

First, let us make (45) convenient to use Theorem 2.11. The change of variable

m2 = m ·m1

is bijective, so we have

1
16p2

∑
m1 �=0,m�=0

(
−m1

p

)(
−m ·m1

p

)(
−am1 − bm ·m1

p

)(
−cm1 − dm ·m1

p

)

= 1
16p2 (p− 1)

(
−1
p

) ∑
m�=0

(
−m

p

)(
−bm− a

p

)(
−dm− c

p

)
.

Next, we deal with the sum

∑
m�=0

(
−m

p

)(
−bm− a

p

)(
−dm− c

p

)
. (46)

Consider the curve y2 = −x(−bx − a)(−dx − c) = −bdx3 − (bc + ad)x2 − acx, which 
can be rewritten as (−bdy)2 = (−bdx)3 − (bc + ad)(−bdx)2 + acbd(−bdx). By replacing 
−bdx with x and −bdy with y, we arrive at the elliptic curve

E : y2 = x3 − (bc + ad)x2 + acbdx = x(x− bc)(x− ad). (47)

Hence, by Theorem 2.11, we obtain that

∑
m∈Fp

(
−m(bm + a)(dm + c)

p

)
= #E(Fp) − p− 1 (48)

where the elliptic curve E over Fp is defined as above (47).
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By Remark 2.9, we compute that each sum in T (3) and T (4) is zero. Thus, we conclude 
that

T (1) + T (2) + T (3) + T (4) = − 1
16p3 ε

2
((

c

p

)
+

(
−b · (ad− bc)

p

))
(p− 1)

− 1
16p3 ε

2
((

a

p

)
+

(
d · (ad− bc)

p

))
(p− 1)

− 1
16p3 ε

2
((

d

p

)
+

(
a · (ad− bc)

p

))
(p− 1)

− 1
16p3 ε

2
((

b

p

)
+

(
−c · (ad− bc)

p

))
(p− 1)

− 1
16p3 ε

2
((

ac

p

)
+

(
bd

p

))
(p− 1)

− 1
16p3 ε

2
((

−ab

p

)
+

(
−cd

p

))
(p− 1)

+ (p− 1)(p− 3)
16p4

+ 1
16p2 (p− 1)

(
−1
p

)
(#E(Fp) − p− 1) . �

Now, we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Let p > 3 be a prime number. Let

Qp(t) = |{(x, y, z, v) ∈ S4
p | y − x = z − y = v − z = t}| (49)

denote the number of 4-term arithmetic progressions in Sp with common difference t.
By Lemma 2.4, the number of 4-APs in Sp is equal to

∑
t∈Fp

Qp(t) = |Sp|4
p2 +p2

∑
(m1,m2) �=(0,0)

Ŝp(m1)Ŝp(m2)Ŝp(−2m1−3m2)Ŝp(m1 +2m2). (50)

Note that the following system of equations

−2x1 − 3x2 = 0

x1 + 2x2 = 0

has a unique solution since we have∣∣∣∣−2 −3
1 2

∣∣∣∣ = −1,
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which is invertible in Fp. Denote the last splitted term by

H = p2
∑

(m1,m2) �=(0,0)

Ŝp(m1)Ŝp(m2)Ŝp(−2m1 − 3m2)Ŝp(m1 + 2m2)

= p|Sp|
∑

m2 �=0, m1=0

Ŝp(m2)Ŝp(−3m2)Ŝp(2m2)

+ p|Sp|
∑

m1 �=0, m2=0

Ŝp(m1)Ŝp(−2m1)Ŝp(m1)

+ p|Sp|
∑

m1+2m2 �=0
−2m1−3m2=0
m2 �=0, m1 �=0

Ŝp(m1)Ŝp(m2)Ŝp(m1 + 2m2)

+ p|Sp|
∑

−2m1−3m2 �=0
m1+2m2=0
m2 �=0, m1 �=0

Ŝp(m1)Ŝp(m2)Ŝp(−2m1 − 3m2)

+ p2
∑

−2m1−3m2 �=0
m1+2m2 �=0
m2 �=0, m1 �=0

Ŝp(m1)Ŝp(m2)Ŝp(−2m1 − 3m2)Ŝp(m1 + 2m2).

By Lemma 5.1, we compute the five sums mentioned above respectively:

T1 =
∑

m2 �=0, m1=0

Ŝp(m2)Ŝp(−3m2)Ŝp(2m2)

=
(

1
8p3 + 1

8p2 ε
2
((

−6
p

)
+

(
2
p

)
+

(
−3
p

)))
(p− 1),

T2 =
∑

m1 �=0, m2=0

Ŝp(m1)Ŝp(−2m1)Ŝp(m1)

=
(

1
8p3 + 1

8p2 ε
2
((

−2
p

)
+

(
1
p

)
+

(
−2
p

)))
(p− 1) ,

T3 =
∑

m1+2m2 �=0
−2m1−3m2=0
m2 �=0, m1 �=0

Ŝp(m1)Ŝp(m2)Ŝp(m1 + 2m2)

=
(

1
8p3 + 1

8p2 ε
2
((

−6
p

)
+

(
−3
p

)
+

(
2
p

)))
(p− 1) .

T4 =
∑

−2m1−3m2 �=0
m1+2m2=0
m2 �=0, m1 �=0

Ŝp(m1)Ŝp(m2)Ŝp(−2m1 − 3m2)

=
(

1
8p3 + 1

8p2 ε
2
((

−2
p

)
+

(
−2
p

)
+

(
1
p

)))
(p− 1) .
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Now, let us calculate the last sum by (III) of Lemma 5.1:

T5 =
∑

−2m1−3m2 �=0
m1+2m2 �=0
m2 �=0, m1 �=0

Ŝp(m1)Ŝp(m2)Ŝp(−2m1 − 3m2)Ŝp(m1 + 2m2)

= (p− 1)(p− 3)
16p4 + 1

16p2 (p− 1)
(
−1
p

)
(#E(Fp) − p− 1)

− 1
16p3 ε

2
((

1
p

)
+

(
2
p

)
+

(
−2
p

)
+

(
−3
p

))
(p− 1)

− 1
16p3 ε

2
((

1
p

)
+

(
−3
p

))
(p− 1)

− 1
16p3 ε

2
((

−2
p

)
+

(
2
p

))
(p− 1)

− 1
16p3 ε

2
((

−2
p

)
+

(
−6
p

)
+

(
−2
p

)
+

(
−6
p

))
(p− 1)

where the elliptic curve E over Fp is defined by

E : y2 = x(x + 4)(x + 3).

Thus, we conclude that the number of non-trivial 4-APs in Sp is given by the following 
formula:

∑
t∈Fp

Qp(t) − |Sp| = |Sp|4
p2

+ p|Sp|
(

1
8p3 + 1

8p2 ε
2
((

−6
p

)
+

(
2
p

)
+

(
−3
p

)))
(p− 1)

+ p|Sp|
(

1
8p3 + 1

8p2 ε
2
((

−2
p

)
+

(
1
p

)
+

(
−2
p

)))
(p− 1)

+ p|Sp|
(

1
8p3 + 1

8p2 ε
2
((

−6
p

)
+

(
−3
p

)
+

(
2
p

)))
(p− 1)

+ p|Sp|
(

1
8p3 + 1

8p2 ε
2
((

−2
p

)
+

(
−2
p

)
+

(
1
p

)))
(p− 1)

+ (p− 1)(p− 3)
16p2 + 1

16 (p− 1)
(
−1
p

)
(#E(Fp) − p− 1)

− 1
16pε

2
((

1
p

)
+

(
2
p

)
+

(
−2
p

)
+

(
−3
p

))
(p− 1)

− 1
ε2

((
1
)

+
(
−3

))
(p− 1)
16p p p
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− 1
16pε

2
((

−2
p

)
+

(
2
p

))
(p− 1)

− 1
16pε

2
((

−2
p

)
+

(
−6
p

)
+

(
−2
p

)
+

(
−6
p

))
(p− 1)

− |Sp|.

When the above equation is rearranged, the desired formula is deduced.
Next, we prove the second part of the theorem by applying the Sato-Tate conjecture, 

which is a theorem now. Recall by Hasse’s theorem that

|p + 1 − #E(Fp)| ≤ 2√p.

Write

2 cos θp = #E(Fp) − p− 1
√
p

,

where θp ∈ [0, π]. By SageMath [36], our elliptic curve

E : y2 = x(x + 3)(x + 4)

has no complex multiplication and its j-invariant is 35152/9 /∈ Z. Then by the Sato-Tate 
conjecture [3,24], we know that

lim
N→∞

|{p ≤ N : 0 ≤ θp ≤ α}|
|{p ≤ N}| = 2

π

α∫
0

sin2 θ dθ = 1
π

(α− sinα · cosα)

for any α ∈ [0, π]. Let ε > 0 be given. Then, choosing α ∈ (0, π] sufficiently small with 
respect to ε and assembling the first part of the theorem, the Hasse bound and the 
previous consequence of the Sato-Tate conjecture, the number of non-trivial 4-APs in Sp

is given by

p2

16 + Rp,

where (
1
8 − ε

)
p

3
2 ≤ |Rp| ≤

(
1
8 + ε

)
p

3
2

holds for infinitely many prime numbers p. Hence, the error term O(p 3
2 ) and the constant 

1 are both best possible. �
8
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6. Proof of Theorem 1.4

We will make use of the following two lemmas in the proof Theorem 1.4.

Lemma 6.1. Let p > 3 be a prime number and for nonzero m ∈ Fp,

Ŝp(m) = 1
2p + 1

2√p
ε

(
−m

p

)
,

where

ε =
{

1 if p ≡ 1 (mod 4),
i if p ≡ 3 (mod 4).

Then, for a, b, c, d, e ∈ Fp with

abcd(ad− bc) �= 0 and e(a− cd)(b− ce) �= 0,

respectively, we have

(I′)
∑

m1 �=0, m2 �=0

Ŝp(m1)Ŝp(m2)Ŝp(am1 + bm2)Ŝp(cm1 + dm2)

=
(

1
8p3 + 1

8p2 ε
2
((

−ab

p

)
+

(
b(bc− ad)

p

)
+

(
−a(bc− ad)

p

)))
p2 − 1

2p

+
(

1
8p3 + 1

8p2 ε
2
((

−cd

p

)
+

(
−d(bc− ad)

p

)
+

(
c(bc− ad)

p

)))
p2 − 1

2p

+ (p− 1)(p− 3)
16p4 + 1

16p2 (p− 1)
(
−1
p

)
(#E(Fp) − p− 1)

− 1
16p3 ε

2
((

a

p

)
+

(
b

p

)
+

(
c

p

)
+

(
d

p

))
(p− 1)

− 1
16p3 ε

2
((

a · (ad− bc)
p

)
+

(
d · (ad− bc)

p

))
(p− 1)

− 1
16p3 ε

2
((

−b · (ad− bc)
p

)
+

(
−c · (ad− bc)

p

))
(p− 1)

− 1
16p3 ε

2
((

−ab

p

)
+

(
−cd

p

)
+

(
ac

p

)
+

(
bd

p

))
(p− 1)

where the elliptic curve E over Fp is defined by

E : y2 = x(x− bc)(x− ad).
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(II′)
∑

am1+bm2+cm3 �=0
dm1+em2+m3=0
m1 �=0,m2 �=0,m3 �=0

Ŝp(m1)Ŝp(m2)Ŝp(m3)Ŝp(am1 + bm2 + cm3)

=
∑

(a−cd)m1+(b−ce)m2 �=0
−dm1−em2 �=0
m2 �=0, m1 �=0

Ŝp(m1)Ŝp(m2)Ŝp(−dm1 − em2)Ŝp((a− cd)m1 + (b− ce)m2).

Proof. (I′). Combining (II) and (III) in Lemma 5.1, we obtain (I ′).
(II′). Using dm1 + em2 + m3 = 0, we get (II ′). �

Lemma 6.2. (I′′) For a, b, c, β, γ ∈ Fp with abcβγ(c − aγ) �= 0, we have

∑
am1+bm2+cm3 �=0
m1+βm2+γm3 �=0
m1 �=0,m2 �=0,m3 �=0

(
−m1

p

)(
−m2

p

)

=
((

−ab

p

)
+

(
−β

p

)
+

(
−(βc− γb)(c− aγ)

p

))
(p− 1).

(II′′) For a, b, c, α, β, γ ∈ Fp with abcαβγ �= 0, we have

∑
αm1+βm2+γm3 �=0
m1 �=0,m2 �=0,m3 �=0

(
−m2

p

)(
am1 + bm2 + cm3

p

)

=
((

−b

p

)
+

(
−α(bα− aβ)

p

)
+

(
−γ(bγ − cβ)

p

))
(p− 1) .

Proof. (I′′) By the inclusion-exclusion principle and the properties of the Legendre 
symbol,

∑
am1+bm2+cm3 �=0
m1 �=0,m2 �=0,m3 �=0

(
−m1

p

)(
−m2

p

)
−

∑
am1+bm2+cm3 �=0
m1+βm2+γm3=0
m1 �=0,m2 �=0,m3 �=0

(
−m1

p

)(
−m2

p

)
(51)

=
∑

m1 �=0,m2 �=0,m3 �=0

(
−m1

p

)(
−m2

p

)
−

∑
am1+bm2+cm3=0
m1 �=0,m2 �=0,m3 �=0

(
−m1

p

)(
−m2

p

)

−
∑

(b−aβ)m2+(c−aγ)m3 �=0
m2 �=0,m3 �=0

(
βm2 + γm3

p

)(
−m2

p

)

= −
∑ (

a−1bm2 + a−1cm3

p

)(
−m2

p

)
−

∑ (
βm2 + γm3

p

)(
−m2

p

)

m2 �=0,m3 �=0 m2 �=0,m3 �=0
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+
∑

(b−aβ)m2+(c−aγ)m3=0
m2 �=0,m3 �=0

(
βm2 + γm3

p

)(
−m2

p

)

= −
∑

m2 �=0,m3 �=0

(
bm2 + cm3

p

)(
−am2

p

)
−

∑
m2 �=0,m3 �=0

(
βm2 + γm3

p

)(
−m2

p

)

+
∑
m2 �=0

(
(βc− γb)m2

p

)(
−(c− aγ)m2

p

)
.

It follows from Proposition 2.8 that

(51) =
∑
m3 �=0

(
−ab

p

)
+

∑
m3 �=0

(
−β

p

)
+

∑
m2 �=0

(
−(βc− γb)(c− aγ)

p

)
.

Then, this yields (I ′′).
(II′′) By the inclusion-exclusion principle,

∑
αm1+βm2+γm3 �=0
m1 �=0,m2 �=0,m3 �=0

(
−m2

p

)(
am1 + bm2 + cm3

p

)

=
∑

m1 �=0,m2 �=0,m3 �=0

(
−m2

p

)(
am1 + bm2 + cm3

p

)

−
∑

αm1+βm2+γm3=0
m1 �=0,m2 �=0,m3 �=0

(
−m2

p

)(
am1 + bm2 + cm3

p

)

=
∑

m2 �=0,m3 �=0

(
−m2

p

)∑
m1

(
am1 + bm2 + cm3

p

)
−

∑
m2 �=0,m3 �=0

(
−m2

p

)(
bm2 + cm3

p

)

−
∑

−α−1βm2−α−1γm3 �=0
m2 �=0,m3 �=0

(
−m2

p

)(
(b− aα−1β)m2 + (c− aα−1γ)m3

p

)

=
∑

m2 �=0,m3 �=0

(
−m2

p

)∑
m1

(
am1 + bm2 + cm3

p

)
−

∑
m2 �=0,m3 �=0

(
−m2

p

)(
bm2 + cm3

p

)
(52)

−
∑

m2 �=0,m3 �=0

(
−αm2

p

)(
(bα− aβ)m2 + (cα− aγ)m3

p

)

+
∑
m2 �=0

(
−αm2

p

)(
(bα− aβ)m2 − (cα− aγ)γ−1βm2

p

)
.

Then, it follows Proposition 2.7, Proposition 2.8 and change of variables that
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(52) =
(
−b

p

)
(p− 1) +

(
−α(bα− aβ)

p

)
(p− 1) +

(
−γ(bγ − cβ)

p

)
(p− 1) . �

Now, we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. Let p > 3 be a prime number. Let

Qp(t) = |{(x1, x2, x3, x4, x5) ∈ S5
p | xi+1 − xi = t for i ∈ {1, . . . , 4}}| (53)

denote the number of 5-term arithmetic progressions in Sp with common difference t.
By Lemma 2.4, the number of 5-APs in Sp is equal to

∑
t∈Fp

Qp(t) = |Sp|5
p3

+ p2
∑

(m1,m2,m3) �=(0,0,0)

Ŝp(m1)Ŝp(m2)Ŝp(m3)Ŝp(−2m1 − 3m2 − 4m3)

· Ŝp(m1 + 2m2 + 3m3).

Denote the last splitted term by

H = p|Sp|
∑

m1 �=0,m2 �=0

Ŝp(m1)Ŝp(m2)Ŝp(−2m1 − 3m2)Ŝp(m1 + 2m2) (54)

+ p|Sp|
∑

m1 �=0,m3 �=0

Ŝp(m1)Ŝp(m3)Ŝp(−2m1 − 4m3)Ŝp(m1 + 3m3)

+ p|Sp|
∑

m2 �=0,m3 �=0

Ŝp(m2)Ŝp(m3)Ŝp(−3m2 − 4m3)Ŝp(2m2 + 3m3)

+ |Sp|2
∑
m3 �=0

Ŝp(m3)Ŝp(−4m3)Ŝp(3m3)

+ |Sp|2
∑
m2 �=0

Ŝp(m2)Ŝp(−3m2)Ŝp(2m2)

+ |Sp|2
∑
m1 �=0

Ŝp(m1)Ŝp(−2m1)Ŝp(m1)

+ p|Sp|
∑

−2m1−3m2−4m3 �=0
m1+2m2+3m3=0
m1 �=0,m2 �=0,m3 �=0

Ŝp(m1)Ŝp(m2)Ŝp(m3)Ŝp(−2m1 − 3m2 − 4m3)

+ p|Sp|
∑

−2m1−3m2−4m3=0
m1+2m2+3m3 �=0
m1 �=0,m2 �=0,m3 �=0

Ŝp(m1)Ŝp(m2)Ŝp(m3)Ŝp(m1 + 2m2 + 3m3)

+ |Sp|2
∑

−2m1−3m2−4m3=0
m1+2m2+3m3=0

Ŝp(m1)Ŝp(m2)Ŝp(m3)
m1 �=0,m2 �=0,m3 �=0
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+ p2
∑

−2m1−3m2−4m3 �=0
m1+2m2+3m3 �=0
m1 �=0,m2 �=0,m3 �=0

Ŝp(m1)Ŝp(m2)Ŝp(m3)Ŝp(−2m1 − 3m2 − 4m3)

· Ŝp(m1 + 2m2 + 3m3).

By (I ′) in Lemma 6.1, we compute the first three sums mentioned above, respectively:

p|Sp|
∑

m1 �=0,m2 �=0

Ŝp(m1)Ŝp(m2)Ŝp(−2m1 − 3m2)Ŝp(m1 + 2m2) (55)

= f1(p)
32p3 +

g1

(
p,

(
−1
p

)
,
(

2
p

)
,
(

3
p

))
32p2

+ 1
32p

(
p2 − 1

)(−1
p

)
(#E1(Fp) − p− 1) ,

where f1 and g1 are two polynomials of degree 3 with respect to p, and the elliptic curve 
E1 over Fp is defined by

E1 : y2 = x3 + 7x2 + 12x = x(x + 3)(x + 4).

p|Sp|
∑

m1 �=0,m3 �=0

Ŝp(m1)Ŝp(m3)Ŝp(−2m1 − 4m3)Ŝp(m1 + 3m3) (56)

= f2(p)
32p3 +

g2

(
p,

(
−1
p

)
,
(

2
p

)
,
(

3
p

))
32p2

+ 1
32p

(
p2 − 1

)(−1
p

)
(#E2(Fp) − p− 1) ,

where f2 and g2 are two polynomials of degree 3 with respect to p, and the elliptic curve 
E2 over Fp is defined by

E2 : y2 = x3 + 10x2 + 24x = x(x + 4)(x + 6).

p|Sp|
∑

m2 �=0,m3 �=0

Ŝp(m2)Ŝp(m3)Ŝp(−3m2 − 4m3)Ŝp(2m2 + 3m3) (57)

= f3(p)
32p3 +

g3

(
p,

(
−1
p

)
,
(

2
p

)
,
(

3
p

))
32p2

+ 1
32p

(
p2 − 1

)(−1
p

)
(#E3(Fp) − p− 1) ,

where f3 and g3 are two polynomials of degree 3 with respect to p, and the elliptic curve 
E3 over Fp is defined by

E3 : y2 = x3 + 17x2 + 72x = x(x + 8)(x + 9).
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By (I) in Lemma 5.1, we calculate the other three following sums in (54), respectively.

|Sp|2
∑
m3 �=0

Ŝp(m3)Ŝp(−4m3)Ŝp(3m3) = f4(p)
32p3 +

g4

(
p,

(
−1
p

)
,
(

2
p

)
,
(

3
p

))
32p2 , (58)

where f4 and g4 are two polynomials of degree 3 with respect to p.

|Sp|2
∑
m2 �=0

Ŝp(m2)Ŝp(−3m2)Ŝp(2m2) = f5(p)
32p3 +

g5

(
p,

(
−1
p

)
,
(

2
p

)
,
(

3
p

))
32p2 , (59)

where f5 and g5 are two polynomials of degree 3 with respect to p.

|Sp|2
∑
m1 �=0

Ŝp(m1)Ŝp(−2m1)Ŝp(m1) = f6(p)
32p3 +

g6

(
p,

(
−1
p

)
,
(

2
p

)
,
(

3
p

))
32p2 , (60)

where f6 and g6 are two polynomials of degree 3 with respect to p.
Combining (II ′) in Lemma 6.1 with (III) in Lemma 5.1, we arrive at

p|Sp|
∑

−2m1−3m2−4m3 �=0
m1+2m2+3m3=0
m1 �=0,m2 �=0,m3 �=0

Ŝp(m1)Ŝp(m2)Ŝp(m3)Ŝp(−2m1 − 3m2 − 4m3) (61)

= f1(p)
32p3 +

g1

(
p,

(
−1
p

)
,
(

2
p

)
,
(

3
p

))
32p2

+ 1
32p

(
p2 − 1

)(−1
p

)
(#E1(Fp) − p− 1) ,

p|Sp|
∑

−2m1−3m2−4m3=0
m1+2m2+3m3 �=0
m1 �=0,m2 �=0,m3 �=0

Ŝp(m1)Ŝp(m2)Ŝp(m3)Ŝp(m1 + 2m2 + 3m3) (62)

= p|Sp|
∑

−3m2−4m3 �=0
m2+2m3 �=0
m3 �=0, m2 �=0

Ŝp(2m2)Ŝp(2m3)Ŝp(−3m2 − 4m3)Ŝp(m2 + 2m3)

= f7(p)
32p3 +

g7

(
p,

(
−1
p

)
,
(

2
p

)
,
(

3
p

))
32p2

+ 1
32p

(
p2 − 1

)(−1
p

)
(#E4(Fp) − p− 1) ,

where f7 and g7 are two polynomials of degree 3 with respect to p, and the elliptic curve 
E4 over Fp is defined by
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E4 : y2 = x3 + 40x2 + 384x = x(x + 16)(x + 24).

Notice that

#E4(Fp) − p− 1 =
p−1∑
x=0

(
x(x + 16)(x + 24)

p

)
=

p−1∑
x=0

(
4x(4x + 16)(4x + 24)

p

)

=
p−1∑
x=0

(
x(x + 4)(x + 6)

p

)
= #E2(Fp) − p− 1.

By (60), we have

|Sp|2
∑

−2m1−3m2−4m3=0
m1+2m2+3m3=0
m1 �=0,m2 �=0,m3 �=0

Ŝp(m1)Ŝp(m2)Ŝp(m3) = |Sp|2
∑
m�=0

Ŝp(m)Ŝp(−2m)Ŝp(m) (63)

= f6(p)
32p3 +

g6

(
p,

(
−1
p

)
,
(

2
p

)
,
(

3
p

))
32p2 .

Now, we calculate the last sum in (54) using Lemma 6.2:

p2
∑

−2m1−3m2−4m3 �=0
m1+2m2+3m3 �=0
m1 �=0,m2 �=0,m3 �=0

Ŝp(m1)Ŝp(m2)Ŝp(m3)Ŝp(−2m1 − 3m2 − 4m3)Ŝp(m1 + 2m2 + 3m3)

(64)

= R(1) + R(2) + R(3),

where

R(1) = p2
∑

−2m1−3m2−4m3 �=0
m1+2m2+3m3 �=0
m1 �=0,m2 �=0,m3 �=0

1
32p3

(
−m2

p

)(
−m3

p

)(
−m1 − 2m2 − 3m3

p

)

·
(

2m1 + 3m2 + 4m3

p

)
(65)

+ p2
∑

−2m1−3m2−4m3 �=0
m1+2m2+3m3 �=0
m1 �=0,m2 �=0,m3 �=0

1
32p3

(
−m1

p

)(
−m3

p

)(
−m1 − 2m2 − 3m3

p

)

·
(

2m1 + 3m2 + 4m3

p

)
(66)

+ p2
∑

−2m1−3m2−4m3 �=0
m1+2m2+3m3 �=0

1
32p3

(
−m1

p

)(
−m2

p

)(
−m1 − 2m2 − 3m3

p

)

m1 �=0,m2 �=0,m3 �=0
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·
(

2m1 + 3m2 + 4m3

p

)
(67)

+ p2
∑

−2m1−3m2−4m3 �=0
m1+2m2+3m3 �=0
m1 �=0,m2 �=0,m3 �=0

1
32p3

(
−m1

p

)(
−m2

p

)(
−m3

p

)(
2m1 + 3m2 + 4m3

p

)

(68)

+ p2
∑

−2m1−3m2−4m3 �=0
m1+2m2+3m3 �=0
m1 �=0,m2 �=0,m3 �=0

1
32p3

(
−m1

p

)(
−m2

p

)(
−m3

p

)(
−m1 − 2m2 − 3m3

p

)
,

(69)

and

R(2) = p2
∑

−2m1−3m2−4m3 �=0
m1+2m2+3m3 �=0
m1 �=0,m2 �=0,m3 �=0

1
32p5 (70)

+ p2
∑

−2m1−3m2−4m3 �=0
m1+2m2+3m3 �=0
m1 �=0,m2 �=0,m3 �=0

1
32p4 ε

2
(
−m1 − 2m2 − 3m3

p

)(
2m1 + 3m2 + 4m3

p

)

(71)

+ p2
∑

−2m1−3m2−4m3 �=0
m1+2m2+3m3 �=0
m1 �=0,m2 �=0,m3 �=0

1
32p4 ε

2
(
−m1

p

)(
−m2

p

)
(72)

+ p2
∑

−2m1−3m2−4m3 �=0
m1+2m2+3m3 �=0
m1 �=0,m2 �=0,m3 �=0

1
32p4 ε

2
(
−m1

p

)(
−m3

p

)
(73)

+ p2
∑

−2m1−3m2−4m3 �=0
m1+2m2+3m3 �=0
m1 �=0,m2 �=0,m3 �=0

1
32p4 ε

2
(
−m2

p

)(
−m3

p

)
, (74)

and

R(3) = p2
∑

−2m1−3m2−4m3 �=0
m1+2m2+3m3 �=0
m1 �=0,m2 �=0,m3 �=0

1
32p4 ε

2
(
−m3

p

)(
2m1 + 3m2 + 4m3

p

)
(75)

+ p2
∑

−2m1−3m2−4m3 �=0
m1+2m2+3m3 �=0

1
32p4 ε

2
(
−m3

p

)(
−m1 − 2m2 − 3m3

p

)
(76)
m1 �=0,m2 �=0,m3 �=0
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+ p2
∑

−2m1−3m2−4m3 �=0
m1+2m2+3m3 �=0
m1 �=0,m2 �=0,m3 �=0

1
32p4 ε

2
(
−m2

p

)(
2m1 + 3m2 + 4m3

p

)
(77)

+ p2
∑

−2m1−3m2−4m3 �=0
m1+2m2+3m3 �=0
m1 �=0,m2 �=0,m3 �=0

1
32p4 ε

2
(
−m2

p

)(
−m1 − 2m2 − 3m3

p

)
(78)

+ p2
∑

−2m1−3m2−4m3 �=0
m1+2m2+3m3 �=0
m1 �=0,m2 �=0,m3 �=0

1
32p4 ε

2
(
−m1

p

)(
2m1 + 3m2 + 4m3

p

)
(79)

+ p2
∑

−2m1−3m2−4m3 �=0
m1+2m2+3m3 �=0
m1 �=0,m2 �=0,m3 �=0

1
32p4 ε

2
(
−m1

p

)(
−m1 − 2m2 − 3m3

p

)
. (80)

Let us calculate (65). Observe that

1
32p

∑
−2m1−3m2−4m3 �=0
m1+2m2+3m3 �=0
m1 �=0,m2 �=0,m3 �=0

(
−m2

p

)(
−m3

p

)(
−m1 − 2m2 − 3m3

p

)(
2m1 + 3m2 + 4m3

p

)

= 1
32p

∑
m1 �=0,m2 �=0,m3 �=0

(
m2m3

p

)

·
(
−2m2

1 − (7m2 + 10m3)m1 − (2m2 + 3m3) (3m2 + 4m3)
p

)
. (81)

We rewrite (81) in order to use Proposition 2.8. Since

b2 − 4ac = (7m2 + 10m3)2 − 4 · 2 · (2m2 + 3m3) · (3m2 + 4m3) = (m2 + 2m3)2 ,

equation (81) becomes

1
32p

∑
m2+2m3=0
m2 �=0,m3 �=0

∑
m1 �=0

(
m2m3

p

)(
−m1 − 2m2 − 3m3

p

)(
2m1 + 3m2 + 4m3

p

)
(82)

+ 1
32p

∑
m2+2m3 �=0
m2 �=0,m3 �=0

∑
m1 �=0

(
m2m3

p

)(
−m1 − 2m2 − 3m3

p

)(
2m1 + 3m2 + 4m3

p

)
.

(83)

Now, we compute (82) with the help of Proposition 2.8:

(82) = 1
32p

∑
m2+2m3=0

∑
m1

(
m2m3

p

)(
−m1 − 2m2 − 3m3

p

)(
2m1 + 3m2 + 4m3

p

)

m2 �=0,m3 �=0
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− 1
32p

∑
m2+2m3=0
m2 �=0,m3 �=0

(
m2m3

p

)(
−2m2 − 3m3

p

)(
3m2 + 4m3

p

)

= 1
32p

∑
m2+2m3=0
m2 �=0,m3 �=0

(p− 1) − 1
32p

∑
m2+2m3=0
m2 �=0,m3 �=0

1

= 1
32p

(
(p− 1)2 − (p− 1)

)
.

By Proposition 2.8, the inclusion-exclusion principle and Equation (48), we get that

(83) = 1
32p

∑
m2+2m3 �=0
m2 �=0,m3 �=0

∑
m1

(
m2m3

p

)(
−m1 − 2m2 − 3m3

p

)(
2m1 + 3m2 + 4m3

p

)

− 1
32p

∑
m2+2m3 �=0
m2 �=0,m3 �=0

(
m2m3

p

)(
−2m2 − 3m3

p

)(
3m2 + 4m3

p

)

= 1
32p

∑
m2+2m3 �=0
m2 �=0,m3 �=0

−
(
−2m2m3

p

)

− 1
32p

∑
m2+2m3 �=0
m2 �=0,m3 �=0

(
m2m3

p

)(
−2m2 − 3m3

p

)(
3m2 + 4m3

p

)

= 1
32p

(
2 (p− 1) −

(
−1
p

)
(p− 1) (#E3(Fp) − p− 1)

)
.

Thus, we obtain that

(65) = 1
32p

(
p (p− 1) −

(
−1
p

)
(p− 1) (#E3(Fp) − p− 1)

)
.

The other terms are quickly determined if the method when calculating (65) is applied. 
Thus, the following calculations are obtained:

(66) = 1
32p

((
−6
p

)
p (p− 1) −

(
−1
p

)
(p− 1) (#E2(Fp) − p− 1)

)
,

(67) = 1
32p

((
6
p

)
p (p− 1) −

(
−1
p

)
(p− 1) (#E1(Fp) − p− 1)

)
,

(68) = 1
32p

((
6
p

)
p (p− 1) −

(
−1
p

)
(p− 1) (#E1(Fp) − p− 1)

)
,

(69) = 1
((

−6
)
p (p− 1) −

(
−1

)
(p− 1) (#E2(Fp) − p− 1)

)
,
32p p p
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(70) = (p− 1)(p2 − 4p + 5)
32p3 ,

(71) = 1
32p2

((
−6
p

)
+

(
−3
p

)
+

(
−2
p

))
(p− 1) .

Also, applying (I ′′) of Lemma 6.2 to R(2) and applying (II ′′) of Lemma 6.2 to R(3), 
we obtain that

(72) = 1
32p2

((
−6
p

)
+

(
−2
p

)
+

(
−2
p

))
(p− 1) ,

(73) = 1
32p2

((
−2
p

)
+

(
−3
p

)
+ 1

)
(p− 1) ,

(74) = 1
32p2

((
−3
p

)
+

(
−6
p

)
+

(
−2
p

))
(p− 1)

and

(75) = 1
32p2

((
−1
p

)
+

(
2
p

)
+

(
2
p

))
(p− 1) ,

(76) = 1
32p2

((
3
p

)
+ 1 +

(
3
p

))
(p− 1) ,

(77) = 1
32p2

((
−3
p

)
+ 1 +

(
−3
p

))
(p− 1) ,

(78) = 1
32p2

((
2
p

)
+

(
2
p

)
+

(
−1
p

))
(p− 1) ,

(79) = 1
32p2

((
−2
p

)
+

(
−2
p

)
+

(
−6
p

))
(p− 1) ,

(80) = 1
32p2

(
1 +

(
−3
p

)
+

(
−2
p

))
(p− 1) .

Considering the equations from (65) to (80), we have calculated Equation (64). Thus, 
we obtain an explicit formula as expressed in the theorem.

Next, we prove the second part of the theorem by making use of a version of the Sato-
Tate conjecture, and for this we refer the reader to [3,24] and the generalized version of 
[31, Corollary 2]. By the first part of the theorem and the Hasse bound, observe that 
the contributions for the error term O(p 3

2 ) come from a subsum in Equations (55), (56), 
(57), (61) and (62), and they are all of the form

1
32p

(
p2 − 1

)(−1
p

)
(#Ei(Fp) − p− 1)

for some i ∈ {1, 2, 3}, as
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#E4(Fp) − p− 1 = #E2(Fp) − p− 1.

Let V1 = V1(a, b) and V2 = V2(a, b) be the following two elliptic curves

y2 = x3 + ax2 + bx

and

y2 = x3 − 2ax2 + (a2 − 4b)x

respectively, where a, b ∈ Z and b(a2 − 4b) �= 0. Then the map

ϕ(x, y) =
(
x + a + 1

x
, y

(
1 − b

x2

))
yields an isogeny from V1 to V2 with kernel {O, (0, 0)}, see [40, p. 110]. Thus, one infers 
that the elliptic curve C1 defined by y2 = x(x + 1)(x + 4) = x3 + 5x2 + 4x and the 
elliptic curve C2 defined by y2 = x(x − 1)(x − 9) = x3 − 10x2 + 9x are isogenous over 
Q. Therefore, for any prime number p > 3, the elliptic curves C1 and C2 are isogenous 
over Fp, and hence

#C1(Fp) = #C2(Fp)

by Tate’s isogeny theorem [44].
For the rest of the proof, let p ≡ 1 (mod 4) so that 

(
−1
p

)
= 1. Next, we will obtain 

that E1(Fp) − p − 1 = E3(Fp) − p − 1. Now, for any prime p > 3

#E1(Fp) − p− 1 =
p−1∑
x=0

(
x(x + 3)(x + 4)

p

)
=

p−1∑
x=0

(
−x(−x + 3)(−x + 4)

p

)

=
p−1∑
x=0

(
x(x− 3)(x− 4)

p

)
=

p−1∑
x=0

(
x(x + 1)(x + 4)

p

)
= #C1(Fp) − p− 1 = #C2(Fp) − p− 1

=
p−1∑
x=0

(
x(x− 1)(x− 9)

p

)
=

p−1∑
x=0

(
x(x + 8)(x + 9)

p

)
= #E3(Fp) − p− 1.

In other words, the corresponding subsums of (55) and (57) coming from the elliptic 
curves are equal. Recall the elliptic curve

E1 : y2 = x(x + 3)(x + 4)
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has no complex multiplication and its j-invariant is 35152/9 /∈ Z. As in the previous 
theorem, set

2 cos θp = #E1(Fp) − p− 1
√
p

,

where θp ∈ [0, π]. Then by the proof of the Sato-Tate conjecture [3,24], one immediately 
gets that

lim
N→∞

|{p ≤ N : 0 ≤ θp ≤ π/6}|
|{p ≤ N : p ≡ 1 (mod 4)}| = 2

ϕ(4)π

π/6∫
0

sin2 θ dθ = 1
48(2π − 3

√
3) ≈ 0.022646,

and cos(π/6) =
√

3/2. Express the number of 5-APs in Sp as

p2

32 + Rp,

where Rp = O(p 3
2 ). By the consequence of the Sato-Tate conjecture, for infinitely many 

primes p ≡ 1 (mod 4), Equations (55), (57) and (61) will bring an error term Tp and

Tp ≥ 1
32p

(
p2 − 1

)
6 cos(π/6)√p = 1

32p
(
p2 − 1

)
3
√

3√p. (84)

The subsums in (56) and (62), namely

1
32p

(
p2 − 1

)(−1
p

)
(#E2(Fp) − p− 1)

and

1
32p

(
p2 − 1

)(−1
p

)
(#E4(Fp) − p− 1)

can cancel out at most

1
32p

(
p2 − 1

)
4√p

of the term in (84), by Hasse’s estimate. Hence, there are two positive absolute constants 
c1 and c2 such that the inequality

c1p
3
2 ≤ |Rp| ≤ c2p

3
2

holds for infinitely many prime numbers p. This yields that the error term O(p 3
2 ) is best 

possible. �
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7. Kummer sums and 3-APs

Let p be an odd prime with p ≡ 1 (mod 3). Then, one has that |Cp| = 1 + p−1
3 = p+2

3
where Cp = {t3 : t ∈ Fp}. Let

K(p) =
p−1∑
x=0

ep(x3)

be the Kummer sum. The Kummer sum is related to a cubic Gauss sum which we define 
next. Let g be a primitive root modulo p and w = e2πi/3. Define the multiplicative cubic 
character

χ : Fp → {0, 1, w, w2}

as follows: χ(0) = 0 and χ(g) = w. Thus, χ(gm) = wr, where r is the remainder when 
m is divided by 3. Note also that χ extends to N as a Dirichlet character. Let

τp =
p−1∑
x=0

χ(x)ep(x)

be the cubic Gauss sum. One can observe that

τp =
p−1∑
x=0

χ(x)ep(x)

as χ(−1) = 1. We have that τp has norm 
√
p, from [12, Chapter 3]. Thus, τp = √

peiθp

and τp = √
pe−iθp for some angle θp. Unlike the quadratic Gauss sum, there is no 

specific formula for θp and in fact there is an equidistribution result by Heath-Brown 
and Patterson in [26] as p varies, and this refuted Kummer’s guess.

For x �= 0, note that 1 +χ(x) +χ(x) = 3 if x is in Cp and otherwise 1 +χ(x) +χ(x) = 0. 
This yields that

K(p) =
p−1∑
x=0

(1 + χ(x) + χ(x))ep(x) = τp + τp = 2√p cos(θp).

Similarly, for a �= 0,

K(a, p) =
p−1∑
x=0

ep(ax3) =
p−1∑
x=0

(1 + χ(x) + χ(x))ep(ax)

=
p−1∑
x=0

χ(x)ep(ax) +
p−1∑
x=0

χ(x)ep(ax)

= χ(a)τp + χ(a)τp.
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The following lemma yields the Fourier transform of the set Cp.

Lemma 7.1. For any nonzero integer m modulo p,

Ĉp(m) = 1
3p (χ(m)τp + χ(m)τp + 2).

Proof. Let m be a nonzero integer modulo p. Then

Ĉp(m) = 1
p

p−1∑
x=0

ep(−mx)Cp(x) = 1
p

∑
x∈Cp

ep(−mx)

= 1
p

(
1 +

∑
x∈Cp−{0}

ep(−mx)
)

= 1
p

(
1 + 1

3

p−1∑
x=1

ep(−mx3)
)

= 1
3p

(
2 +

p−1∑
x=0

ep(−mx3)
)

= 1
3p (χ(m)τp + χ(m)τp + 2),

as χ(m) = χ(−m), and we also apply the previous observation above. �
Now, we are ready to count the number of non-trivial 3-term arithmetic progressions 

in Cp.

Proof of Theorem 1.5. As we did in the proof of Lemma 2.4,

Qp = p2(Ĉp(0))3 + p2
p−1∑
m=1

Ĉp(m)Ĉp(m)Ĉp(−2m) − p + 2
3

= (p + 2)3

27p + p2
p−1∑
m=1

Ĉp(m)Ĉp(m)Ĉp(−2m) − p + 2
3 . (85)

Notice that τpτp = p, one has Ĉp(m) = Ĉp(−m), χ(m)χ(m) = 1 and χ(m2) =
χ(m)2 = χ(m) for any nonzero m modulo p. Then, using the observations above, for any 
nonzero m modulo p, one sees that

Ĉp(m)Ĉp(m)Ĉp(2m)

= 1
27p3 (χ(m)τp + χ(m)τp + 2)2(χ(2m)τp + χ(2m)τp + 2)

= 1
27p3 (χ(m2)τ2

p + χ(m2)τp2 + 4 + 2p + 4χ(m)τp

+ 4χ(m)τp) · (χ(2m)τp + χ(2m)τp + 2)

= 1
3

(
χ(2)τ3

p + χ(m)χ(2)τ2
p τp + 2χ(m)τ2

p + χ(m)χ(2)τp2τp + χ(2)τp3

27p
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+ 2χ(m)τp2 + (2p + 4)χ(2m)τp + (2p + 4)χ(2m)τp + 4p + 8 + 4χ(2)χ(m)τ2
p

+ 4χ(2)p + 8χ(m)τp + 4χ(2)p + 4χ(2)χ(m)τp2 + 8χ(m)τp
)
.

By orthogonality, for any non-principal Dirichlet character h modulo p, we have that

p−1∑
m=1

h(m) = 0.

By the previous calculations and orthogonality of χ and χ, Equation (85) becomes

Qp = (p + 2)3

27p + p− 1
27p (χ(2)τ3

p + χ(2)τp3 + 4p + 8 + 4χ(2)p + 4χ(2)p) − p + 2
3 . (86)

As τp = √
peiθp , we have the first part of the theorem. Note that χ(2) +χ(2) = 2 if 2 

is a cubic residue, and otherwise χ(2) + χ(2) = −1. Also τ3
p + τp

3 = 2p3/2 cos(3θp). By 
[12, Chapter 3], one has that

cos(3θp) = a

2√p
,

where 4p = a2 + 27b2 and a ≡ 1 (mod p). By [12, Chapter 3], we know that

τ3
p = p

p−1∑
t=1

χ(t(1 + t)) = p(A + Bw),

for some integers A and B. Thus, τp3 = p(A + Bw2). Moreover p = A2 −AB + B2 and 
4p = (2A −B)2 + 3B2. This yields that

cos(3θp) = 2A−B

2√p

and

sin(3θp) = B
√

3
2√p

.

Next, we compute the sum

zp = χ(2)τ3
p + χ(2)τp3.

If χ(2) = 1 = χ(2), we already computed the sum. Now, suppose χ(2) = w = e2πi/3. 
Then,
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zp = 2p3/2 cos(3θp + 2π/3) = 2p3/2
(
−cos(3θp)

2 − sin(3θp)
√

3
2

)
(87)

= 2p3/2
(
−2A−B

4√p
− 3B

4√p

)
= −p(A + B). (88)

Similarly, if χ(2) = w2 = e−2πi/3, then

zp = 2p3/2 cos(3θp − 2π/3) = 2p3/2
(
−2A−B

4√p
+ 3B

4√p

)
= −p(A− 2B). (89)

By assembling (86), (87), (89) and the value of χ(2) + χ(2), which is an element of 
the set {2, −1}, we deduce that

Qp = (p + 2)3

27p + p− 1
27p (pcp + 4p + 8) − p + 2

3 ,

where cp ∈ Z is a computable constant which depends on p.
Lastly, suppose that p is of the form u2 + 27v2 for some integers u and v with u ≡ 2

(mod 3). Thus 4p = (2u)2 + 27(2v)2. Then by [10, Theorem 4.15], we know that 2 is a 
cubic residue, in other words χ(2) = 1 = χ(2). Then, by (86) we conclude that

Qp = (p + 2)3

27p + p− 1
27p (τ3

p + τp
3 + 12p + 8) − p + 2

3

= (p + 2)3

27p + p− 1
27p (2p3/2 cos(3θp) + 12p + 8) − p + 2

3

= (p + 2)3

27p + p− 1
27p (2p3/2 2u

2√p
+ 12p + 8) − p + 2

3

= (p + 2)3

27p + p− 1
27p (2up + 12p + 8) − p + 2

3 . �
Example 7.2. Let p = 31. Then p = u2 + 27v2 where u = 2 and v = 1. Applying our 
theorem, we deduce that there are 50 many non-trivial 3-term arithmetic progressions 
in C31. Let p = 43. Then p = u2 +27v2 where u = −4 and v = 1. Applying our theorem, 
we deduce that there are 70 many non-trivial 3-term arithmetic progressions in C43.

8. Arithmetic progressions and the Sárközy problem in Salem sets

From now on, we will work with Salem families and under some Fourier coefficient 
bounds, we will show the existence of long arithmetic progressions in Salem families. 
Besides, we also deal with the generalized Sárközy problem in Salem families by making 
use of the Weil estimates on exponential sums. Note that the following result does not 
give Theorem 1.1 if k ≥ 4.
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Proposition 8.1. Let k ≥ 3 be a positive integer and {AN}N∈B be an α-Salem family with 
the α-Salem constant C such that α ≤ 1

k−1 . Suppose that |AN | ≥ 16(C+1)2N k−1
k for all 

sufficiently large N ∈ B. Then AN contains a non-trivial k-term arithmetic progression 
for sufficiently large N .

Proof. For any fixed α ∈
(
0, 1

k−1

]
, let {AN}N∈B be an α-Salem family with the α-Salem 

constant C and k ≥ 3 be a positive integer. By Lemma 2.4, we know that the number 
of k-APs in AN is

N2|AN |k
Nk

+ R,

where

R =N2
∑

(x1,x2,...,xk−2) �=0

ÂN (x1) · · · ÂN (xk−2)ÂN (x1 + 2x2 + · · · + (k − 2)xk−2)

· ÂN (−2x1 − 3x2 − · · · − (k − 1)xk−2).

Notice that there are k-terms in R related with the Fourier transform at the values 
x1, x2, . . . , xk−2, x1 + 2x2 + · · · + (k − 2)xk−2 and −2x1 − 3x2 − · · · − (k − 1)xk−2. 
Set yi = xi for i ∈ {1, . . . , k − 2}, yk−1 = x1 + 2x2 + · · · + (k − 2)xk−2 and yk =
−2x1 − 3x2 − · · · − (k − 1)xk−2. We will look for an upper bound for R. There are two 
critical situations of the terms y1, . . . , yk to be aware of: the former is terms being zero, 
and the latter is terms being nonzero. First, we will prove that at the same time, at most 
k − 2 of the terms can be 0. Recall that from the definition of R, we don’t let the case 
x1 = x2 = · · · = xk−2 = 0. Clearly, if one of ys �= 0 and the remaining yi’s are all 0, then 
both yk−1 = x1+2x2+ · · ·+(k−2)xk−2 = sxs and yk = −2x1−3x2−· · ·−(k−1)xk−2 =
−(s +1)xs are zero, and this yields that ys = xs = 0 as well and this is impossible. Hence, 
at most k − 2 of the terms can be 0. From elementary number theory, the following 
congruence

az ≡ b (mod N) (90)

is solvable if and only if gcd(a, N) | b, and if it is solvable, then it has gcd(a, N) many 
incongruent solutions. Next, we analyze the case where k − 2 of the terms are zero. For 
this purpose, we assume k − 3 of x1, . . . , xk−2 and one of

yk−1 = x1 + 2x2 + · · · + (k − 2)xk−2 and yk = −2x1 − 3x2 − · · · − (k − 1)xk−2

is zero. Say yi = xi �= 0 and yk−1 = x1 + 2x2 + · · · + (k − 2)xk−2 = 0. Then since all 
remaining terms are zero, we must have ixi = 0 and by (90), we have at most i ≤ k

many choices for xi (a similar case holds for yk = 2x1 + · · · + (k − 1)xk−2 = 0).
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Now suppose k−4 of x1, . . . , xk−2 are 0 and yk−1 = yk = 0. Without loss of generality 
assume that xm, xs �= 0 with 1 ≤ m < s ≤ k − 2. Then, we have the following system of 
equations:

(m + 1)xm + (s + 1)xs = 0

mxm + sxs = 0,

and it gives that xs = −xm and (m − s)xm = 0. Once again, we have at most k many 
options for xm. As a result, the contribution of this case to R is at most

k

(
k

2

)
|AN |k−2

Nk−4 C2N−2|AN |2α = k

(
k

2

)
C2 |AN |k−2+2α

Nk−2 . (91)

If k− 3 of them are zero and say the terms yi1, yi2 , yi3 are nonzero, we get the sum of 
at most 

(
k
3
)

many expressions in the following form

N2 |AN |k−3

Nk−3 ÂN (yi1)ÂN (yi2)ÂN (yi3). (92)

There are basically two cases for the choices of yi1 , yi2 , yi3 . The first option is they are 
of the form xi, xj , y� where i, j are distinct and � ∈ {k − 1, k}, and the second option is 
they are of the form xi, xj , x� where i, j and � are distinct. For the first option, we may 
assume that � = k − 1. Thus yk = −(i + 1)xi − (j + 1)xj = 0 and xj depends on xi and 
there are at most k choices for xj when xi is fixed by (90). For the second option, we have 
yk−1 = yk = 0, in other words, ixi + jxj + �x� = −(i + 1)xi − (j + 1)xj − (� + 1)x� = 0. 
From this, we deduce that x� = −xi − xj and (i − �)xi + (j − �)xj = 0. Again, if xi is 
fixed then there are at most k many choices for other variables. So the above sum (92) is 
actually a single variable sum up to at most k many choices. It follows from the α-Salem 
condition, the triangle inequality and the above observation that the contribution of this 
case to R is at most

k

(
k

3

)
|AN |k−3

Nk−5 C3N−3|AN |3αN = k

(
k

3

)
C3 |AN |k−3+3α

Nk−3 . (93)

If none of yi1 , yi2 , . . . , yij is zero and the other equations are zero, we have 
(
k
j

)
many 

expressions in the following form

N2 |AN |k−j

Nk−j
ÂN (yi1)ÂN (yi2) · · · ÂN (yij ),

and similar to the above discussion, this brings the error term

k

(
k
)
N2 |AN |k−j

k−j
Cj |AN |jα

j
N j−2 = k

(
k
)
Cj |AN |k−j+jα

k−j
.

j N N j N
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If none of y1, y2, . . . , yk−2, yk−1 and yk is zero, this yields the following most dominant 
error term: ∣∣∣∣N2

∑
(y1,y2,...,yk) �=0

ÂN (y1) · · · ÂN (yk−2)ÂN (yk−1)ÂN (yk)
∣∣∣∣

≤ N2Ck |AN |kα
Nk

Nk−2 = Ck|AN |kα.

As Cj ≤ (C + 1)k for any j ∈ {1, . . . , k} and for any non-negative real number C, for 
the error term R, we have the following estimate

|R| ≤ k2k(C + 1)k|AN |kα.

Next, we will see that

k2k(C + 1)k|AN |kα ≤ 1
2Nk−2 |AN |k,

in other words

|AN |k(1−α) ≥ k2k+1(C + 1)kNk−2

when N is large enough. Recall that |AN | ≥ 16(C + 1)2N k−1
k if N is sufficiently large 

and α ≤ 1
k−1 . Therefore, 1 − α ≥ 1 − 1

k−1 . Then,

|AN |k(1−α) ≥ 16k(1− 1
k−1 )(C + 1)2k(1− 1

k−1 )Nk−2 = 24k(1− 1
k−1 )(C + 1)2k(1− 1

k−1 )Nk−2.

(94)
Observe that 2(1 − 1

k−1 ) ≥ 1, 4k(1 − 1
k−1 ) ≥ 2k and 22k ≥ k2k+1 when k ≥ 3. Hence, by 

(94) and by the previous inequalities, we obtain that

|R| ≤ 1
2Nk−2 |AN |k

when N is large enough. Therefore, when N is large enough

∑
t∈ZN

QN (t) =
∣∣∣∣ |AN |k
Nk−2 + R

∣∣∣∣
≥

∣∣∣∣ |AN |k
Nk−2 − |R|

∣∣∣∣
≥ 1

2Nk−2 |AN |k.

There are |AN | trivial k-APs in AN . So, the number of non-trivial k-APs in AN is at 
least
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1
2Nk−2 |AN |k − |AN | = |AN |

(
1

2Nk−2 |AN |k−1 − 1
)

≥ 16(C + 1)2 N
k−1
k

(
1

2Nk−2 16k−1(C + 1)2k−2N (k−1)2/k − 1
)

= 16(C + 1)2 N
k−1
k

(
16k−1(C + 1)2k−2

2 N1/k − 1
)
,

which is positive if N is sufficiently large. �
Now, let us make a convenient arrangement of Proposition 8.1 to prove a special case 

of Szemerédi’s theorem when the Fourier coefficients are extremely small.

Corollary 8.2. Let γ (n) : Z>0 → R>0 be an arithmetic function such that γ (n) = Oε (nε)
for every ε > 0. Let A be any subset of positive integers and {AN}N∈B, where B is an 
infinite subset of positive integers, be a family of subsets of positive integers such that 
AN = A ∩{1, 2, . . . , N}. Moreover, we regard AN as a subset of ZN . If {AN}N∈B satisfies 
the following Fourier coefficient bounds and growth conditions

|ÂN (m)| ≤ γ(|AN |)
N

and |AN | ≥ N

γ (N) ,

for each N ∈ B and m �= 0, then A contains arbitrarily long arithmetic progressions.

Proof. Suppose that {AN}N∈B satisfies the Fourier bound condition |ÂN (m)| ≤ γ(|AN |)
N

when m is nonzero and |AN | ≥ N
γ(N) holds for each N ∈ B. Let k ≥ 3 be given. It follows 

from the definition of γ that

|ÂN (m)| ≤ |AN | 1
k−1

N
,

when m is nonzero and

|AN | ≥ N

γ (N) ≥ 64N
k−1
k

holds for sufficiently large N ∈ B. Thus, AN contains a non-trivial k-term ZN -arithmetic 
progression for sufficiently large N ∈ B by Proposition 8.1. Hence, A contains arbitrarily 
long Z-arithmetic progressions by Proposition 2.3. �

As we mentioned before, the sets {Sp} constitute a 1
2 -Salem family. Now, we consider 

the generalized Sárközy problem for α-Salem families.

Proposition 8.3. Let {AN}N∈P be an α-Salem family for some fixed α ∈ (0, 34 ) with 
the α-Salem constant C, where P is an infinite subset of primes. Let f ∈ Z[X] be a 
non-linear polynomial. Suppose that
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|AN | ≥ DN
1

4(1−α)

for all N ∈ P large enough, where D = (2(deg f − 1)C2)
1

2(1−α) . Then, for sufficiently 
large N , the set AN contains two distinct elements whose difference is f(i) for some 
i ∈ ZN .

Proof. For any fixed α ∈ (0, 34 ), let {AN}N∈P be an α-Salem family with the α-Salem 
constant C. Moreover, we may assume that f /∈ NZ[X] by taking N ∈ P sufficiently 
large. Now, let us define

Q(t) = |{(x, y) ∈ AN ×AN : x− y = f(t)}|.

So, the number of pairs in AN whose difference is in the image of f is at least

1
deg f

∑
t∈ZN

Q(t) = 1
deg f

∑
x,t∈ZN

AN (x)AN (x + f(t)).

If we use the Fourier inversion formula, then we get that∑
t∈ZN

Q(t) =
∑

x,m,s∈ZN

ÂN (s)eN (sx)ÂN (m)eN (mx)
∑
t∈ZN

eN (mf(t)) (95)

=
∑

s,m∈ZN

ÂN (s)ÂN (m)
∑

x∈ZN

eN ((s + m)x)
∑
t∈ZN

eN (mf(t)).

It follows from Equation (3) that

∑
x∈ZN

eN ((s + m)x) =
{
N if s + m = 0,
0 otherwise.

Therefore, one sees that∑
t∈ZN

Q(t) = N
∑

m∈ZN

ÂN (−m)ÂN (m)
∑
t∈ZN

eN (mf(t))

= NÂN (0)ÂN (0)N + N
∑
m�=0

ÂN (−m)ÂN (m)
∑
t∈ZN

eN (mf(t))

= |AN |2 + N
∑
m�=0

ÂN (−m)ÂN (m)
∑
t∈ZN

eN (mf(t)).

We denote this by ∑
Q(t) = |AN |2 + R,
t∈ZN
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where

R = N
∑
m�=0

ÂN (−m)ÂN (m)
∑
t∈ZN

eN (mf(t)).

By triangle inequality, Salem condition and Theorem 2.15, we infer that

|R| ≤ (deg f − 1) ·N 3
2
∑
m�=0

|ÂN (−m)||ÂN (m)|

≤ (deg f − 1) ·N 3
2
C2

N2 |AN |2αN

= (deg f − 1) · C2 ·
√
N |AN |2α.

Hence, for N large enough

∑
t∈ZN

Q(t) =
∣∣∣∣|AN |2 + R

∣∣∣∣
≥

∣∣∣∣|AN |2 − |R|
∣∣∣∣

≥ |AN |2 − (deg f − 1) · C2 ·
√
N |AN |2α.

As we want to count the distinct pairs, we must subtract those off. There are at most 
|AN | of them. So the number of distinct elements whose difference is f(i) for some i ∈ ZN

is greater than or equal to

1
deg f

(
|AN |2 − (deg f − 1) · C2 ·

√
N |AN |2α

)
− |AN | ≥ |AN |2

2 deg f − |AN |,

which is positive when N is large enough since α ∈ (0, 34 ) and |AN | ≥ DN
1

4(1−α) , where 

D = (2(deg f − 1)C2)
1

2(1−α) . �
Corollary 8.4. Let f ∈ Z[X] be a non-constant polynomial and n ≥ 2. Consider the 
Diophantine equation

xn − yn = f(z). (96)

If p is a sufficiently large prime number, then (96) always admits a solution in Fp with 
x �= y.

Proof. Consider the family 
{
Ωn

p

}
p∈P , where Ωn

p = {tn : t ∈ Fp}. We know that this 
family is a 1

2 -Salem family and |Ωn
p | ≥ 1 + p−1

n . Then, we conclude the corollary by the 
previous proposition. �
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