Please use this identifier to cite or link to this item:
Title: Dynamic computational wear model of PEEK-on-XLPE bearing couple in total hip replacements
Authors: Alpkaya, Alican Tuncay
Mihçin, Şenay
Keywords: Archard wear law
Finite element modeling
Total hip replacement
Wear predict model
Chromium alloys
Publisher: Elsevier
Abstract: Understanding wear mechanisms is a key factor to prevent primary failures causing revision surgery in total hip replacement (THR) applications. This study introduces a wear prediction model of (Polyetheretherketone) PEEK-on-XLPE (cross-linked polyethylene) bearing couple utilized to investigate the wear mechanism under 3D-gait cycle loading over 5 million cycles (Mc). A 32-mm PEEK femoral head and 4-mm thick XLPE bearing liner with a 3-mm PEEK shell are modeled in a 3D explicit finite element modeling (FEM) program. The volumetric and linear wear rates of XLPE liner per every million cycles were predicted as 1.965 mm3/Mc, and 0.0032 mm/Mc respectively. These results are consistent with the literature. PEEK-on-XLPE bearing couple exhibits a promising wear performance used in THR application. The wear pattern evolution of the model is similar to that of conventional polyethylene liners. Therefore, PEEK could be proposed as an alternative material to the CoCr head, especially used in XLPE-bearing couples. The wear prediction model could be utilized to improve the design parameters with the aim of prolonging the life span of hip implants. © 2023
ISSN: 1350-4533
Appears in Collections:Mechanical Engineering / Makina Mühendisliği
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record

CORE Recommender


checked on Apr 5, 2024

Page view(s)

checked on Apr 22, 2024

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.