Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/13579
Title: Antifouling Polydopamine-Modified Poly (ether Sulfone) Membrane Immobilized With Alumina-Calcium Oxide Catalyst for Continuous Biodiesel Production
Authors: Güngörmüş, Elif
Şeker, Erol
Alsoy Altınkaya, Sacide
Keywords: Catalytic membrane
Sustainable biodiesel production
Alumina
Calcium oxide catalyst
Polydopamine modified PES membrane
Assisted immobilization
Acidified oil
Transesterification
Publisher: Elsevier
Abstract: Biodiesel is an alternative biofuel that can be blended with conventional petroleum-derived diesel fuel to partly reduce the dependence on the imported oil. Catalytic membrane reactors are promising candidates for sustainable biodiesel production. Herein, we report a novel catalytically active polydopamine-modified poly (ether sulfone) (PES) membrane immobilized with an alumina-calcium oxide catalyst. The reaction temperature, butanol to canola oil ratio, and transmembrane pressure applied through the membrane were optimized with response surface methodology and Box-Behnken design. In contrast to all previous catalytic membrane studies for biodiesel production, we used butanol as a co-reactant to improve the winter problems of biodiesel made with methanol. FTIR and SEM-EDX analysis confirmed the successful immobilization of the catalyst. At the end of 30 days of storage in the reactant mixture, 95% of the catalyst loaded to the membrane was still on the surface, and biodiesel yield values and butanol flux of the membrane did not change. We compared the batch and flowthrough operation modes by measuring the catalytic activity of membranes under static and dynamic conditions within 24 h (8-cycle). The biodiesel yield under dynamic condition decreased in the first three cycles from 54.54 +/- 0.65% to 47.31 +/- 0.70% and then stayed constant, whereas a continuous decrease from 25.42 +/- 0.57% to 17.19 +/- 0.58% was observed under static condition. In each cycle, the equilibrium limitation for the yield was overcome only when the membrane was operated under pressure. The main reason for the decrease in catalytic activities was the fouling on the catalyst surface which was quickly removed by backwashing with butanol. It is concluded that catalytic membranes with antifouling properties and alcohol stability can make biodiesel production more cost-effective and environmentally friendly.
URI: https://doi.org/10.1016/j.fuel.2023.128685
https://hdl.handle.net/11147/13579
ISSN: 0016-2361
1873-7153
Appears in Collections:Chemical Engineering / Kimya Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
1-s2.0-S001623612301298X-main.pdf
  Until 2025-01-01
12.02 MBAdobe PDFView/Open    Request a copy
Show full item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

3
checked on Dec 21, 2024

Page view(s)

226
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.