Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/13234
Title: Impact of titania phase structure and surface reactivity on the photocatalytic degradation of various dyes and textile wastewater
Authors: Yurtsever, Hüsnü Arda
İloğlu, Onur
Çiftçioğlu, Muhsin
Alparslan Türkeş Bilim ve Teknoloji Üniversitesi
Alparslan Türkeş Bilim ve Teknoloji Üniversitesi
01. Izmir Institute of Technology
Keywords: Crystal structure
Photocatalysis
Surface properties
Textile wastewater
Issue Date: Jan-2023
Publisher: National Institute of Science Communication and Policy Research
Abstract: Titania (TiO2) powders have been prepared by precipitation method in different precipitation media which contain sulfate, nitrate or organic species. Photocatalytic degradation of different dyes and a real textile wastewater have been conducted with these powders along with commercial powder Degussa P25 for comparison. Ethyl alcohol (organic medium), sulfuric acid (sulfate medium) and nitric acid (nitrate medium) have been used to dissolve titanium precursor for the precipitation of TiO2 in ammonia solution. UV-Vis DRS and XPS results indicate that S doping in sulfate medium precipitated powder and N doping in nitrate medium precipitated powder has been occurred and the presence of S or N containing impurities on the grain boundaries have been improved light absorption of TiO2 significantly. However, these powders have exhibited low surface reactivities. The highest surface reactivity has been obtained with the powder precipitated in organic medium which also has the highest crystallite sizes (76 nm rutile and 34 nm anatase crystallites) with relatively low rutile weight percentage (10.0%). The surface-normalized rate constants of this powder are 0.02038 min-1.m-2 in real textile wastewater degradation and 0.0161 min-1.m-2 in methyl orange degradation, which are 0.01563 and 0.0091 min-1.m-2, respectively, for Degussa P25. Results have shown that this powder show 30-70% higher surface reactivities compared to Degussa P25. The main structural difference of organic medium precipitated powder and Degussa P25 has been found to be the anatase-rutile weight ratio and crystallite size of rutile phase whereas band gap energy of Degussa P25 is lower and other properties are not significantly different.
URI: https://doi.org/10.56042/ijct.v30i1.59399
https://hdl.handle.net/11147/13234
Appears in Collections:Chemical Engineering / Kimya Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
59399-465630688-1-PB.pdf
  Until 2025-07-01
Article2.12 MBAdobe PDFView/Open    Request a copy
Show full item record



CORE Recommender

Page view(s)

72
checked on Mar 4, 2024

Download(s)

2
checked on Mar 4, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.