Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/12936
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGöral, Haydartr
dc.date.accessioned2023-02-05T13:25:05Z-
dc.date.available2023-02-05T13:25:05Z-
dc.date.issued2022-
dc.identifier.issn1553-1732-
dc.identifier.urihttps://hdl.handle.net/11147/12936-
dc.description.abstractIn 1915, Theisinger proved that all harmonic numbers are not integers except for the first one. In 1862, Wolstenholme proved that the numerator of the reduced form of the harmonic number Hp−1 is divisible by p2 and the numerator of the reduced form of the generalized harmonic number (Formula presented) is divisible by p for all primes p ≥ 5. In this note, we define harmonic type matrices and our goal is to extend Theisinger’s and Wolstenholme’s results to harmonic type matrices. © 2022, Colgate University. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherColgate Universityen_US
dc.relation.ispartofIntegersen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleSome remarks on harmonic type matricesen_US
dc.typeArticleen_US
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.volume22en_US
dc.identifier.scopus2-s2.0-85134224633en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıtr
dc.authorscopusid55616260000-
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityQ4-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
SomeHGw66.pdf278.32 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

168
checked on Nov 18, 2024

Download(s)

56
checked on Nov 18, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.