Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/12779
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTopçu, Buraktr
dc.contributor.authorÖz, Işıltr
dc.date.accessioned2023-01-19T08:30:11Z-
dc.date.available2023-01-19T08:30:11Z-
dc.date.issued2022-
dc.identifier.issn0920-8542-
dc.identifier.urihttps://doi.org/10.1007/s11227-022-04933-2-
dc.identifier.urihttps://hdl.handle.net/11147/12779-
dc.descriptionThis work was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK), Grant No: 119E011.en_US
dc.description.abstractAs graphics processing units (GPUs) evolve to offer high performance for general-purpose computations in addition to inherently fault-tolerant graphics applications, soft error reliability becomes a significant concern. Fault injection provides a method of evaluating the soft error vulnerability of target programs. Since performing fault injection experiments for complex GPU hardware structures takes impractical times, the prediction-based techniques to evaluate the soft error vulnerability of general-purpose GPU (GPGPU) programs based on metrics from different domains get crucial for both HPC developers and GPU vendors. In this work, we propose machine learning (ML)-based prediction frameworks for the soft error vulnerability evaluation of GPGPU programs. We consider program characteristics, hardware usage and performance metrics collected from the simulation and the profiling tools. While we utilize regression models to predict the masked fault rates, we build classification models to specify the vulnerability level of the GPGPU programs based on their silent data corruption (SDC) and crash rates. Our prediction models achieve maximum prediction accuracy rates of 95.9, 88.46, and 85.7% for masked fault rates, SDCs, and crashes, respectivelyen_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofJournal of Supercomputingen_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectComputer graphicsen_US
dc.subjectComputer hardwareen_US
dc.subjectError correctionen_US
dc.subjectGraphics processing uniten_US
dc.titleSoft error vulnerability prediction of GPGPU applicationsen_US
dc.typeArticleen_US
dc.authorid0000-0002-2462-0509en_US
dc.institutionauthorTopçu, Buraktr
dc.institutionauthorÖz, Işıltr
dc.departmentİzmir Institute of Technology. Computer Engineeringen_US
dc.identifier.wosWOS:000886326300001en_US
dc.identifier.scopus2-s2.0-85142132964en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıtr
dc.identifier.doi10.1007/s11227-022-04933-2-
dc.relation.issn0920-8542en_US
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ2-
item.fulltextWith Fulltext-
item.grantfulltextembargo_20251201-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept01. Izmir Institute of Technology-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:Computer Engineering / Bilgisayar Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
s11227-022-04933-2.pdf
  Until 2025-12-01
Article2.19 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

200
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.