Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/12751
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÇelik, Ege Yiğit-
dc.contributor.authorOrulluoğlu, Zeynel-
dc.contributor.authorMertoğlu, Rıdvan-
dc.contributor.authorTekir, Selma-
dc.date.accessioned2023-01-11T13:19:49Z-
dc.date.available2023-01-11T13:19:49Z-
dc.date.issued2022-
dc.identifier.issn1300-0632-
dc.identifier.urihttps://doi.org/10.55730/1300-0632.3962-
dc.identifier.urihttps://hdl.handle.net/11147/12751-
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/1143201-
dc.description.abstractWord algebra problems are among challenging AI tasks as they combine natural language understanding with a formal equation system. Traditional approaches to the problem work with equation templates and frame the task as a template selection and number assignment to the selected template. The recent deep learning-based solutions exploit contextual language models like BERT and encode the natural language text to decode the corresponding equation system. The proposed approach is similar to the template-based methods as it works with a template and fills in the number slots. Nevertheless, it has contextual understanding because it adopts a question generation and answering pipeline to create tuples of numbers, to finally perform the number assignment task by custom sets of rules. The inspiring idea is that by asking the right questions and answering them using a state-of-the-art language model-based system, one can learn the correct values for the number slots in an equation system. The empirical results show that the proposed approach outperforms the other methods significantly on the word algebra benchmark dataset alg514 and performs the second best on the AI2 corpus for arithmetic word problems. It also has superior performance on the challenging SVAMP dataset. Though it is a rule-based system, simple rule sets and relatively slight differences between rules for different templates indicate that it is highly probable to develop a system that can learn the patterns for the collection of all possible templates, and produce the correct equations for an example instance.en_US
dc.language.isoenen_US
dc.publisherTÜBİTAK - Türkiye Bilimsel ve Teknolojik Araştırma Kurumuen_US
dc.relation.ispartofTurkish Journal of Electrical Engineering and Computer Sciencesen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAlgebraic word problemsen_US
dc.subjectMath problem solveren_US
dc.subjectQuestion generation and answeringen_US
dc.titleAsking the Right Questions To Solve Algebraic Word Problemsen_US
dc.typeArticleen_US
dc.authoridWOS:000898559800013-
dc.authorid0000-0001-5138-6116-
dc.authorid0000-0001-7547-476X-
dc.authorid0000-0002-3682-754X-
dc.authorid0000-0002-0488-9682-
dc.departmentİzmir Institute of Technology. Computer Engineeringen_US
dc.identifier.wosWOS:000898559800013-
dc.identifier.scopus2-s2.0-85145253311-
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.55730/1300-0632.3962-
dc.relation.issn1300-0632en_US
dc.description.volume30en_US
dc.description.issue7en_US
dc.description.startpage2672en_US
dc.description.endpage2687en_US
dc.identifier.trdizinid1143201-
dc.identifier.wosqualityQ4-
dc.identifier.scopusqualityQ3-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.openairetypeArticle-
item.cerifentitytypePublications-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:Computer Engineering / Bilgisayar Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
TR Dizin İndeksli Yayınlar / TR Dizin Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
Asking the right questions.pdfArticle File315.22 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

846
checked on Dec 30, 2024

Download(s)

692
checked on Dec 30, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.