Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/12538
Title: Wien effect in interfacial water dissociation through proton-permeable graphene electrodes
Authors: Cai, Junhao
Griffin, Eoin
Guarochico-Moreira, Victor H.
Barry, D.
Xin, B.
Yağmurcukardeş, Mehmet
Zhang, Sheng
Geim, Andre K.
Peeters, François M.
Lozada-Hidalgo, Marcelo
Keywords: Wien effect
Graphene
Electric fields
Reaction rate
Electrokinesis
Publisher: Nature Research
Abstract: Strong electric fields can accelerate molecular dissociation reactions. The phenomenon known as the Wien effect was previously observed using high-voltage electrolysis cells that produced fields of about 107 V m−1, sufficient to accelerate the dissociation of weakly bound molecules (e.g., organics and weak electrolytes). The observation of the Wien effect for the common case of water dissociation (H2O ⇆ H+ + OH−) has remained elusive. Here we study the dissociation of interfacial water adjacent to proton-permeable graphene electrodes and observe strong acceleration of the reaction in fields reaching above 108 V m−1. The use of graphene electrodes allows measuring the proton currents arising exclusively from the dissociation of interfacial water, while the electric field driving the reaction is monitored through the carrier density induced in graphene by the same field. The observed exponential increase in proton currents is in quantitative agreement with Onsager’s theory. Our results also demonstrate that graphene electrodes can be valuable for the investigation of various interfacial phenomena involving proton transport.
Description: This work was supported by The Royal Society (URF\R1\201515, M.L.-H.), Lloyd’s Register Foundation and European Research Council (VANDER) (A.K.G.). J.C. acknowledges a full scholarship from the Chinese Scholarship Council (CSC). E.G. and D.B. acknowledge the EPSRC NOWNano programme (EP/L01548X/1) for funding. Part of this work was supported by the Flemish Science Foundation (FWO-Vl) and a BAGEP Award of the Turkish Academy of Sciences with funding from the Sevinc-Erdal Inonu Foundation.
URI: https://doi.org/10.1038/s41467-022-33451-1
https://hdl.handle.net/11147/12538
ISSN: 2041-1723
Appears in Collections:Photonics / Fotonik
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
s41467-022-33451-1.pdfArticle (Makale)995.43 kBAdobe PDFView/Open
Show full item record



CORE Recommender

SCOPUSTM   
Citations

23
checked on Nov 29, 2024

WEB OF SCIENCETM
Citations

19
checked on Nov 9, 2024

Page view(s)

268
checked on Dec 2, 2024

Download(s)

126
checked on Dec 2, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.