Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/12516
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOrhan, Semihtr
dc.contributor.authorGuerrero, Jose J.en_US
dc.contributor.authorBaştanlar, Yalıntr
dc.date.accessioned2022-10-04T11:51:47Z-
dc.date.available2022-10-04T11:51:47Z-
dc.date.issued2022-
dc.identifier.issn2160-7508-
dc.identifier.urihttps://doi.org/10.1109/CVPRW56347.2022.00444-
dc.identifier.urihttps://hdl.handle.net/11147/12516-
dc.descriptionThis work was supported by the Scientific and Technological Research Council of Turkey under Grant No. 120E500 and also under 2214-A International Researcher Fellowship Programme.en_US
dc.description.abstractAny city-scale visual localization system has to overcome long-term appearance changes, such as varying illumination conditions or seasonal changes between query and database images. Since semantic content is more robust to such changes, we exploit semantic information to improve visual localization. In our scenario, the database consists of gnomonic views generated from panoramic images (e.g. Google Street View) and query images are collected with a standard field-of-view camera at a different time. To improve localization, we check the semantic similarity between query and database images, which is not trivial since the position and viewpoint of the cameras do not exactly match. To learn similarity, we propose training a CNN in a self-supervised fashion with contrastive learning on a dataset of semantically segmented images. With experiments we showed that this semantic similarity estimation approach works better than measuring the similarity at pixel-level. Finally, we used the semantic similarity scores to verify the retrievals obtained by a state-of-the-art visual localization method and observed that contrastive learning-based pose verification increases top-1 recall value to 0.90 which corresponds to a 2% improvement.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartofIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectVisual localizationen_US
dc.subjectCamerasen_US
dc.subjectSemantic similarityen_US
dc.subjectQuery processingen_US
dc.titleSemantic pose verification for outdoor visual localization with self-supervised contrastive learningen_US
dc.typeConference Objecten_US
dc.authorid0000-0002-1159-2334en_US
dc.authorid0000-0002-3774-6872en_US
dc.institutionauthorOrhan, Semihtr
dc.institutionauthorBaştanlar, Yalıntr
dc.departmentİzmir Institute of Technology. Computer Engineeringen_US
dc.identifier.wosWOS:000861612704009en_US
dc.identifier.scopus2-s2.0-85137825011en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıtr
dc.relation.conference2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022en_US
dc.relation.publication2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)en_US
dc.identifier.doi10.1109/CVPRW56347.2022.00444-
dc.relation.isbn978-166548739-9en_US
dc.relation.doi10.1109/CVPRW56347.2022en_US
dc.relation.issn2160-7508en_US
dc.description.volume2022-Juneen_US
dc.description.startpage3988en_US
dc.description.endpage3997en_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeConference Object-
crisitem.author.dept01.01. Units Affiliated to the Rectorate-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:Computer Engineering / Bilgisayar Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
Semantic_Pose.pdfConference Object3.67 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

2
checked on Nov 9, 2024

Page view(s)

242
checked on Nov 18, 2024

Download(s)

92
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.