Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/12440
Full metadata record
DC FieldValueLanguage
dc.contributor.authorŞahan, Gökhanen_US
dc.contributor.authorÖzdemir, Deryaen_US
dc.date.accessioned2022-09-20T11:32:33Z-
dc.date.available2022-09-20T11:32:33Z-
dc.date.issued2022-
dc.identifier.urihttp://doi.org/10.23919/ASCC56756.2022.9828046-
dc.identifier.urihttps://hdl.handle.net/11147/12440-
dc.description.abstractIn this work, we consider Uniform Asymptotic Stability (UAS) of nonlinear time-varying systems. We utilize an indefinite signed polynomial of Lyapunov Function (LF) for the upper bound of the derivative of LF. This special bound is especially useful for perturbation problems. Compared to the ones in the literature we improve the upper bound of the LF and its related properties. Since UAS is the first step for input to state stability (ISS) and integral ISS, it should be thought that these improvements will give rise to new advances in real-world applications as well.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectLyapunov functionsen_US
dc.subjectLyapunov second methoden_US
dc.subjectUniform asymptotic stabilityen_US
dc.subjectNonlinear time varying systemsen_US
dc.titleUniform asymptotic stability by indefinite Lyapunov Functionsen_US
dc.typeConference Objecten_US
dc.authorid0000-0002-2371-6648en_US
dc.institutionauthorŞahan, Gökhanen_US
dc.institutionauthorÖzdemir, Deryaen_US
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.scopus2-s2.0-85135626044en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conference13th Asian Control Conference, ASCC 2022en_US
dc.relation.publicationASCC 2022 - 2022 13th Asian Control Conference, Proceedingsen_US
dc.identifier.doi10.23919/ASCC56756.2022.9828046-
dc.relation.isbn978-899321523-6en_US
dc.description.startpage1771en_US
dc.description.endpage1774en_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeConference Object-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
Uniform_Asymptotic.pdfConference Paper843.97 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Nov 15, 2024

Page view(s)

206
checked on Nov 18, 2024

Download(s)

194
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.