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Abstract—In this work, we consider Uniform Asymptotic
Stability (UAS) of nonlinear time-varying systems. We utilize
an indefinite signed polynomial of Lyapunov Function (LF) for
the upper bound of the derivative of LF. This special bound is
especially useful for perturbation problems. Compared to the
ones in the literature we improve the upper bound of the LF
and its related properties. Since UAS is the first step for input to
state stability (ISS) and integral ISS, it should be thought that
these improvements will give rise to new advances in real-world
applications as well.

Index Terms—nonlinear time varying systems, uniform asymp-
totic stability, input-to-state stability, Lyapunov second method,
indefinite Lyapunov function.

I. INTRODUCTION

Consider the nonlinear system

ẋ = f(t, x), t0 ≥ 0 (1)

and its controlled version

ẋ = h(t, x, u), t0 ≥ 0 (2)

where f ∈ C[J ×Rn ×Rm,Rn] is locally Lipschitz in x and
u and piecewise continuous in t, assuming the input signal
u(t) as piecewise continuous and bounded function of t ≥ 0.

The nonlinear system structures (1) and (2) are the most
common equations encountered in real world applications.
When it comes to understand its long time behaviour, Lya-
punov Function method is quite common as well, [7], [11],
[24] and [25]. But negativity assumption for its derivative so
the difficulty in finding a suitable Lyapunov Function tailored
with system equation leads research to relax its conditions [16]
and [18].

One of the main attempts to this end is bounding the
derivative V̇ (t, x) with a linear form of V (t, x). Especially in
recent decade, many research has been done using this form,

V̇ (t, x) ≤ g(t)V (t, x). (3)

Authors put some conditions on g(t) and so tried to give
some conclusions on different kinds of stability and for
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different kinds of system structures, [2], [3], [4], [8], [9], [10],
[13], [14], [19], [22], [26] and [27]. Since this approach is
quite different from the ones which have been used so far,
authors generalized many of the given stability conditions in
the literature. These approaches can actually be summarized
as an application of Gronwall inequality - [15] and classical
Comparison Lemma - [11] and their extensions.

One of the research direction to this end is UAS which
is a conservative form of Asymptotic Stability (AS) of the
system, [1]. UAS has great importance since it’s the main
requirement for ISS and iISS and also since it takes part
in converse theorems so in perturbation problems, [11]. To
receive UAS & ISS via indefinite LF (ILF), authors of [19]
used the upper bound (3) with some special conditions on
the function V (t, x). [4] and [27] improved this condition and
match it with the stability behaviour of a Linear Time-Varying
(LTV) system.

In this work, we use a different kind of upper bound
structure for the derivation of the LF comparing with the ones
in the ILF literature. Actually the bound that we use is a
generalized form of many of them. Here, the ILF that we
used is especially effective for the following reasons:

1) To relax the conditions given for g(t) so to remove the
complete dependency on g(t). This gives some of this
load to the other coefficient that take part in the upper
bound of V̇ (t, x).

2) For perturbation problem of a system [23].
Perturbation of a UAS or uniformly bounded (UB)
linear & nonlinear system is a well studied issue in the
literature, [2], [9], [8], [11] and [21]. The approach that
we have in this work is a different point of view to this
problem and improve many of the conditions given in
them.

Nomenclature: Throughout the paper we use the follow-
ing abbreviations and definitions. By the negative powers of
V , we mean the multiplicative inverse of it, not functional
inverse; R is the set of real numbers, J := [0,∞), J+ :=
(0,∞), J− := (−∞, 0), by Cn[A,B] we mean n times
differentiable functions from A to B, PC represents piecewise
continuous functions; K, K∞ and KL are the families of

2022 The 13th Asian Control Conference (ASCC 2022)
 

Jeju Island, Korea, May 4-7, 2022

978-89-93215-23-6/22/$31.00 ⓒACA 1771

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on September 20,2022 at 10:31:05 UTC from IEEE Xplore.  Restrictions apply. 



class K, K∞ and KL functions, [11]. ||.|| is the standard
Euclidean norm. Hi(t)[f(t), g(t)] (or simply Hi(t) if f and g
are clear) is a series generated by f(t) and g(t) in the sense
of Lemma 2 of [22], LF is a Lyapunov Function V .

II. FUNDAMENTAL CONCEPTS

We first start by giving some fundamental definitions, [7],
[11] and [24].

Definition 1: The equilibrium x = 0 of (1) is said to be:
• stable if, for every t0 and each ϵ > 0, there is a δ(ϵ, t0) >

0 such that

∥x(t0)∥ < δ ⇒ ∥x(t)∥ < ϵ, ∀t ≥ t0 ≥ 0; (4)

• uniformly stable (US) if δ = δ(ϵ), i.e. it’s independent of
t0, such that (4) is satisfied;

• attractive if for every t0, there is a positive constant c =
c(t0) > 0 such that

x(t) → 0 as t → ∞, ∀∥x(t0)∥ < c. (5)

• uniformly attractive (UA) if the constant c in (5) is
independent from t0 or equivalently for each η > 0, there
is T = T (η) > 0 such that

||x(t)|| < η, ∀t ≥ t0 + T (η), ∀||x(t0)|| < c (6)

• asymptotically stable (AS) if it is stable and attractive
• equiasymptotically stable (EAS) if it is stable and UA
• uniformly asymptotically stable (UAS) if it is US and UA
• exponentially stable (ES) if there exist c, k and α ∈ R+

such that

||x(t)|| ≤ k||x(t0)||e−α(t−t0), ∀||x(t0)|| < c

and globally exponentially stable (GES) if it holds for all
initials.

Compared to time invariant nonlinear systems, time varying
ones have a rich variety of stability types, 36 of [7]. For
example, while global UAS (GUAS) and global AS (GAS) are
the same concepts for linear time invariant systems, it’s not
for time varying ones. Thus we encounter different variants of
examples when we study time varying systems. It’s also worth
to emphasize that a system may be US and attractive but not
UAS, or it may be an EAS system which is not UAS. Thus,
uniformity for both stability and attractivity is necessary for
UAS. Some counter examples should be found in 5.3 of [15],
35, 36 of [7] and 4.5 of [11].

Lemma 1: (UAS by Comparison Functions- [11])
The system (1) is UAS if and only if there exist a function

β ∈ KL and a positive constant c, independent of t0, such
that

||x(t)|| ≤ β(||x(t0)||, t− t0) ∀t ≥ t0 ≥ 0, ∀ ||x(t0)|| < c
(7)

We give the concept of stable function which is introduced
in [26].

Lemma 2: Consider the following scalar LTV system

ẏ(t) = µ(t)y(t), t ∈ J (8)

where y : J → R is the state function, µ ∈ PC(J,R). Then
µ(t) is AS if the system (8) is AS which is equivalent to

lim
t→∞

∫ t

t0

µ(λ)dλ = −∞. (9)

In a similar manner, we refer to the ES or uniform ES (UES)
of the system (8) when we say a function is ES or UES, [27].

III. MAIN RESULTS

In the work [22], we gave an indefinite signed upper bound
for the derivative of the Lyapunov Function V as

V̇ (t, x) ≤ π(t)V m(t, x) + µ(t)V (t, x) (10)

which is a boundary structure often studied in the literature
[6], [8], [14] and [17] where π, µ ∈ C∞,m ̸= 1 . Then
we proved the AS of system (1) without uniformity. But it’s
known that uniformity is one of the main requirements in
many adaptations and real world applications like input to
state stability (ISS) or integral ISS (iISS). Because it’s a well
known fact that, if the system (2) is ISS, then necessarily the
uncontrolled version ( u = 0 case of (2)) is UAS, [11] and
[12]. Now, in this section, we give UAS with some revised
and improved conditions comparing with the works in the
literature, [4], [19] and [27].

Consider (10) and multiply each sides by (1 −
m)V −m(t, x)µ(t) where µ(t) = (m − 1)

∫ t

t0
µ(λ)dλ. Then

we have

m < 1 ⇒ d

dt

[
V 1−mexp(µ(t))

]
≤ (1−m)π(t)exp(µ(t))

(11)

m > 1 ⇒ d

dt

[
V 1−mexp(µ(t))

]
≥ (1−m)π(t)exp(µ(t))

(12)
In [22], we also gave a restriction for the sign of the function

π(t):

π(t) ∈ C∞(J, I), I =

{
J+, m < 1
J−, m > 1

(13)

Here, we gave the sign assumptions of π(t) to obtain a
positive right hand side for (11) and (12). The sign assumption
for m > 1 is taken so that it’s possible to have negative powers
of each sides for the next step. On the other hand, the sign
assumption for m < 1 should be regarded redundant. Because
the integration process preserves the sign and after that the
resulting left hand side is positive so the right hand side is.

Let us consider again the integration of the right hand side
of (11) and (12). Integrating both sides, we obtain

m < 1 ⇒ V 1−m(t, x(t)) ≤ (1−m)

∫ t

t0
π(τ)exp(µ(τ))dτ

exp(µ(t))
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+
V 1−m
0

exp(µ(t))
(14)

where V0 := V (t0, x0) and inequality is opposite direction for
m > 1.

When we consider the right hand side of above inequality,
it’s hard to remove the dependency on t0 so to choose a δ =
δ(ϵ) as we emphasized in the work [22]. This makes more
difficult to receive uniform asymptotic stability (UAS).

Now, instead of using signed assumptions (13), let us
assume ∫ t

t0

π(τ)exp(µ(τ))dτ < 0 (15)

where t ≥ t0 ≥ 0.
We have two reasons to put this assumption. First one is to

be able to take negative powers for the case m > 1. Second
one is to be able to increase right hand side so to receive UAS
for m < 1. These kind of assumptions, that is, to assume the
resulting integral to have a fixed signed instead of the integrand
that we considered is common in the literature, Theorem 5 of
[4], Theorem 1 of [5]. Even this negativity seems a restriction,
it will enable us to relax some properties of the coefficient µ(t)
by taking into account the effect of the other coefficient π(t).

Now assume further that V (t, x) is bounded by αi ∈
K∞, i = 1, 2, that is,

α1(||x(t)||) ≤ V (t, x) ≤ α2(||x(t)||) (16)

and (15) is satisfied. Then the integral term given in (14) can
be removed and it turns to the following form for any m.

V (t, x(t)) ≤ V0 e
∫ t
t0

µ(λ)dλ (17)

This leads us to the following estimate:

||x(t)|| ≤ α−1
1

[
α2||x(t0)||e

∫ t
t0

µ(λ)dλ] (18)

Now we have some alternatives to receive UAS, i.e. to have
a class KL function on the right hand side. The right hand side
of (18) is clearly a class K function by Lemma 4.2 of [11].
At this stage, to make it also a class L function, while [27]
assumes

V̇ (t, x) ≤ µ(t)V (t, x) (19)

and µ(t) to be a UES function, on the other hand [4] proposes
some others. But we suppose that both the upper bound of
V̇ (t, x) and the conditions on µ(t) should be relaxed and
revised with some alternative conditions.

Remark 1: Let us give the state of the art as well and
compare the given conditions. First of all, for LTV systems,
UES is equivalent to UAS, Theorem 6.13 of [20]. It’s further
known that UAS has two parts: US and UA, Section 5.1 - 31
of [24]. (8) is a LTV system and thus US is equivalent to
saying that norm of the solution exp(

∫ t

t0
µ(λ)dλ) is bounded

with a constant independent from t0, Section 5.4 - 73 of [24]
and Theorem 6.4 of [20]. On the other hand, UA represents
convergency to zero uniformly in t0, Section 5.1 - 29 of [24].

The works [27] and [4] consider UAS and ISS of a non-
linear time varying system. For ISS, by considering the upper
bounding structure (19), while these conditions were presented
with UES of µ(t) in Theorem 3-ii of [27] in a compact form,
it’s presented as

•
∫∞
t0

µ(t)dt = −∞,

•
∫ t

s
µ(λ)dλ ≤ M, ∀t ≥ s ≥ t0,

in Theorem 2 of [4]. But these two theorems actually give the
same conclusion, using similar requirements because of the
explanations that we gave above. This also should be seen by
checking their ISS gains α−1

1

(
2eMρ(||u(t)||)

)
.

Here the convergence should be received without need of
(9) but utilizing the other coefficient π(t) in the upper bound.
This of course does not only remedy the problem but also
enlarge the class of µ(t) functions so the candidate Lyapunov
Functions that we have. This also enriches the tools that we
can use for analysis. This also probably will present a bigger
ISS-gain in future works.

Now, we are ready to give our conclusion on UAS.
Theorem 3: Consider the system (1). Assume that there

exist such functions

1) V : J × Rn → J, V ∈ C1,
2) µ(t), π(t) : J → R and µ(t), π(t) ∈ C∞,
3) V̇ (t, x) ≤ π(t)V m(t, x) + µ(t)V (t, x) ∀x ∈ Rn − {0}

that (15) and (16) hold. Then, the system (1) is UAS if one
of the following conditions hold:

1) µ(t) is UAS (or equivalently UES) for any m ̸= 1.
2) µ(t) is US, m > 1 and we have

∫ t

t0

(1−m)π(τ)exp(µ(τ))dτ ≥ α3(t− t0) (20)

or equivalently

(1−m)Hi(t)exp(µ(t))− (1−m)Hi(t0) ≥ α3(t− t0)
(21)

for α3 ∈ K∞ where Hi(t) := Hi(t)[µ(t), π(t)].

Proof:
(1) We obtain the form (17) and so the estimation (18) easily

from the inequality (10) using (16) and the assumption (15).
First of all, it’s clear that the right hand side of this estimation
is a class K function by Lemma 4.2 of [11]. On the other hand,
as the function µ(t) is UAS, it’s uniformly attractive. Thus,
there exists a σ ∈ L by 59 - Sec.5.1 of [24] such that the
right hand side of (18) is bounded by α−1

1

[
α2||x(t0)||σ(t)

]
.

Consequently, as the norm of the solution is bounded by a
class KL function, it’s UAS by Definition 2.

(2) Assume that all the hypothesis hold. Then integrating
both sides of (12) and using (15), we receive the following
inequalities

V (t, x) ≤

[
1∫ t

t0
(1−m)π(τ)exp(µ(τ))dτ

exp(µ(t)) +
V 1−m
0

exp(µ(t))

] 1
m−1
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=

[
V m−1
0 exp(µ(t))

V m−1
0

∫ t

t0
(1−m)π(τ)exp(µ(τ))dτ + 1

] 1
m−1

.

By US of µ(t), we have
∫ t

s
µ(λ)dλ ≤ M, ∀t ≥ s ≥ t0.

In addition, by condition (21) and the infinite series approach
that we first introduced in Lemma 2 of [22], we revise the
right hand side of the above inequality as follows

≤ exp(M)

(
V m−1
0

V m−1
0 α3(t− t0) + 1

) 1
m−1

.

Here, the right hand side is an increasing function of V m−1
0 ,

so it is possible to enlarge using αi’s. Thus we have

||x(t)|| ≤ α−1
1

[( αm−1
2 (||x0||)

αm−1
2 (||x0||)α3(t− t0) + 1

) 1
m−1

]
Now for simplicity, let us define β(r, s) := r

rs+K where r

represents αm−1
2 (||x0||) and s represents α3(t−t0). It’s known

that this function β(r, s) ∈ KL for K > 0, Example 4.16 of
[11]. This shows that the right hand side is a class K- function
of ||x0|| and a class L function of t− t0 which shows that the
system is UAS.□

Example 1: Consider the system

ẋ(t) =
cos(t)

2
x− t

2
x3, t ≥ t0 ≥ 0 (22)

and the LF V (t, x) = x2. We have

V̇ (t, x) = cos(t)V − tV 2 := µ(t)V + π(t)V 2.

Here note that µ(t) is a US function but not a UAS func-
tion. Because the equilibrium of the corresponding system
ẏ(t) = cos(t)y is even not attractive. Thus, none of the
methods mentioned in the works [4], [19] and [27] can be
applied.

Now, let us evaluate the problem in the view of perturbation
problem of LTV systems. (22) should be regarded as perturba-
tion of the US scalar LTV system ẋ(t) = cos(t)

2 x. This nominal
system is US, clearly the perturbation term is g(t, x) := − t

2x
3

and none of the requirements of [2] and [21] are met. But we
preserve US by also adding UA.

We have without actually solving the system (22) that

∫ t

t0

(1−m)π(τ)eµ(τ)dτ =

∫ t

t0

τesin(τ)−sin(t0)dτ

≥ e−2

∫ t

t0

τdτ = e−2(t− t0) := α3(t− t0).

As the rest of the hypothesis of Theorem 2 holds, we can
conclude that the nonlinear system (22) is UAS.

Consequently, we can also state as a future work that if
the necessary conditions mentioned in the Theorem 2 are met
UAS of a nonlinear system is preserved. This can be regarded

as a corollary of our main result to this well studied problem,
[21].
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