Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/12340
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Orhan, Semih | - |
dc.contributor.author | Baştanlar, Yalın | - |
dc.date.accessioned | 2022-08-15T18:23:28Z | - |
dc.date.available | 2022-08-15T18:23:28Z | - |
dc.date.issued | 2021 | - |
dc.identifier.isbn | 978-1-6654-0191-3 | - |
dc.identifier.issn | 2473-9936 | - |
dc.identifier.uri | https://doi.org/10.1109/ICCVW54120.2021.00198 | - |
dc.identifier.uri | https://hdl.handle.net/11147/12340 | - |
dc.description | 18th IEEE/CVF International Conference on Computer Vision (ICCV) -- OCT 11-17, 2021 | en_US |
dc.description.abstract | In this work, we focus on a localization technique that is based on image retrieval. In this technique, database images are kept with GPS coordinates and the geographic location of the retrieved database image serves as an approximate position of the query image. In our scenario, database consists of panoramic images (e.g. Google Street View) and query images are collected with a standard field-of-view camera in a different time. While searching the match of a perspective query image in a panoramic image database, unlike previous studies, we do not generate a number of perspective images from the panoramic image. Instead, taking advantage of CNNs, we slide a search window in the last convolutional layer belonging to the panoramic image and compute the similarity with the descriptor extracted from the query image. In this way, more locations are visited in less amount of time. We conducted experiments with state-of-the-art descriptors and results reveal that the proposed sliding window approach reaches higher accuracy than generating 4 or 8 perspective images. | en_US |
dc.description.sponsorship | This work was supported by the Scientific and Technological Research Council of Turkey (TUBI.TAK), Grant No: 120E500 | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 18th IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2021 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Image retrieval | en_US |
dc.subject | Database images | en_US |
dc.title | Efficient search in a panoramic image database for long-term visual localization | en_US |
dc.type | Conference Object | en_US |
dc.authorid | 0000-0002-3774-6872 | - |
dc.department | İzmir Institute of Technology. Computer Engineering | en_US |
dc.identifier.startpage | 1727 | en_US |
dc.identifier.endpage | 1734 | en_US |
dc.identifier.wos | WOS:000739651101091 | en_US |
dc.identifier.scopus | 2-s2.0-85123055290 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı ve Öğrenci | en_US |
dc.identifier.doi | 10.1109/ICCVW54120.2021.00198 | - |
dc.identifier.wosquality | N/A | - |
dc.identifier.scopusquality | N/A | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Conference Object | - |
crisitem.author.dept | 01.01. Units Affiliated to the Rectorate | - |
crisitem.author.dept | 03.04. Department of Computer Engineering | - |
Appears in Collections: | Computer Engineering / Bilgisayar Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
Efficient_Search_in_a_Panoramic.pdf | 5.83 MB | Adobe PDF | View/Open |
CORE Recommender
SCOPUSTM
Citations
4
checked on Nov 15, 2024
WEB OF SCIENCETM
Citations
2
checked on Nov 9, 2024
Page view(s)
1,078
checked on Nov 18, 2024
Download(s)
216
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.