Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/12307
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAktılav, Busenuren_US
dc.contributor.authorÖz, Işılen_US
dc.date.accessioned2022-08-11T10:55:44Z-
dc.date.available2022-08-11T10:55:44Z-
dc.date.issued2022-05-
dc.identifier.issn0167-8191-
dc.identifier.urihttps://doi.org/10.1016/j.parco.2022.102942-
dc.identifier.urihttps://hdl.handle.net/11147/12307-
dc.descriptionThis work was supported by the Scientific and Technological Research Council of Turkey, Grant No: 119E011en_US
dc.description.abstractApproximate computing techniques, where less-than-perfect solutions are acceptable, present performance-accuracy trade-offs by performing inexact computations. Moreover, heterogeneous architectures, a combination of miscellaneous compute units, offer high performance as well as energy efficiency. Graph algorithms utilize the parallel computation units of heterogeneous GPU architectures as well as performance improvements offered by approximation methods. Since different approximations yield different speedup and accuracy loss for the target execution, it becomes impractical to test all methods with various parameters. In this work, we perform approximate computations for the three shortest-path graph algorithms and propose a machine learning framework to predict the impact of the approximations on program performance and output accuracy. We evaluate random predictions for both synthetic and real road-network graphs, and predictions of the large graph cases from small graph instances. We achieve less than 5% prediction error rates for speedup and inaccuracy values.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofParallel Computingen_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectApproximate computingen_US
dc.subjectGPU computingen_US
dc.subjectMachine learningen_US
dc.titlePerformance and accuracy predictions of approximation methods for shortest-path algorithms on GPUsen_US
dc.typeArticleen_US
dc.authorid0000-0002-8310-1143en_US
dc.institutionauthorAktılav, Busenuren_US
dc.institutionauthorÖz, Işılen_US
dc.departmentİzmir Institute of Technology. Computer Engineeringen_US
dc.identifier.wosWOS:000833419300002en_US
dc.identifier.scopus2-s2.0-85133193847en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.parco.2022.102942-
dc.contributor.affiliation01. Izmir Institute of Technologyen_US
dc.contributor.affiliation01. Izmir Institute of Technologyen_US
dc.relation.issn0167-8191en_US
dc.description.volume112en_US
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ3-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:Computer Engineering / Bilgisayar Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
1-s2.0-S0167819122000400-main.pdfArticle (Makale)2.71 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

1,484
checked on Nov 18, 2024

Download(s)

48
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.