Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/12301
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYan, Yien_US
dc.contributor.authorKuruoğlu, Ercan Enginen_US
dc.contributor.authorAltınkaya, Mustafa Azizen_US
dc.date.accessioned2022-08-11T07:03:19Z-
dc.date.available2022-08-11T07:03:19Z-
dc.date.issued2022-06-
dc.identifier.issn0165-1684-
dc.identifier.urihttps://doi.org/10.1016/j.sigpro.2022.108662-
dc.identifier.urihttps://hdl.handle.net/11147/12301-
dc.description.abstractEfficient and robust online processing techniques for irregularly structured data are crucial in the current era of data abundance. In this paper, we propose a graph/network version of the classical adaptive Sign algorithm for online graph signal estimation under impulsive noise. The recently introduced graph adaptive least mean squares algorithm is unstable under non-Gaussian impulsive noise and has high computational complexity. The Graph-Sign algorithm proposed in this work is based on the minimum dispersion criterion and therefore impulsive noise does not hinder its estimation quality. Unlike the recently proposed graph adaptive least mean pth power algorithm, our Graph-Sign algorithm can operate without prior knowledge of the noise distribution. The proposed Graph-Sign algorithm has a faster run time because of its low computational complexity compared to the existing adaptive graph signal processing algorithms. Experimenting on steady-state and time-varying graph signals estimation utilizing spectral properties of bandlimitedness and sampling, the Graph-Sign algorithm demonstrates fast, stable, and robust graph signal estimation performance under impulsive noise modeled by alpha stable, Cauchy, Student's t, or Laplace distributions.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofSignal Processingen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAdaptive filteren_US
dc.subjectGraph signal processingen_US
dc.subjectImpulsive noiseen_US
dc.subjectSign algorithmen_US
dc.titleAdaptive sign algorithm for graph signal processingen_US
dc.typeArticleen_US
dc.authorid0000-0001-8048-5850en_US
dc.institutionauthorAltınkaya, Mustafa Azizen_US
dc.departmentİzmir Institute of Technology. Electrical and Electronics Engineeringen_US
dc.identifier.wosWOS:000832869400009en_US
dc.identifier.scopus2-s2.0-85132766958en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.sigpro.2022.108662-
dc.contributor.affiliationTsinghua Universityen_US
dc.contributor.affiliationTsinghua Universityen_US
dc.contributor.affiliation01. Izmir Institute of Technologyen_US
dc.relation.issn0165-1684en_US
dc.description.volume200en_US
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ1-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept03.05. Department of Electrical and Electronics Engineering-
Appears in Collections:Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
1-s2.0-S0165168422002018-main.pdfArticle (Makale)2.48 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

11
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

8
checked on Oct 26, 2024

Page view(s)

390
checked on Nov 18, 2024

Download(s)

304
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.