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a b s t r a c t 

Efficient and robust online processing techniques for irregularly structured data are crucial in the cur- 

rent era of data abundance. In this paper, we propose a graph/network version of the classical adap- 

tive Sign algorithm for online graph signal estimation under impulsive noise. The recently introduced 

graph adaptive least mean squares algorithm is unstable under non-Gaussian impulsive noise and has 

high computational complexity. The Graph-Sign algorithm proposed in this work is based on the mini- 

mum dispersion criterion and therefore impulsive noise does not hinder its estimation quality. Unlike the 

recently proposed graph adaptive least mean p th power algorithm, our Graph-Sign algorithm can oper- 

ate without prior knowledge of the noise distribution. The proposed Graph-Sign algorithm has a faster 

run time because of its low computational complexity compared to the existing adaptive graph signal 

processing algorithms. Experimenting on steady-state and time-varying graph signals estimation utilizing 

spectral properties of bandlimitedness and sampling, the Graph-Sign algorithm demonstrates fast, stable, 

and robust graph signal estimation performance under impulsive noise modeled by alpha stable, Cauchy, 

Student’s t, or Laplace distributions. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Graph-based data structures are gaining popularity in recent 

ears due to the effective power of graphs in representing mul- 

ivariate irregular data in fields such as data science, informa- 

ion engineering, bioinformatics, and finance [1–4] . However, with 

his increasing popularity of the utilization of graphs, traditional 

ata processing techniques that were optimized on structured data 

ould not adapt to the structural irregularities and could not uti- 

ize the intrinsic relationships among data seen in or modeled 

y graphs, which led to a demand for algorithms that could pro- 

ess graph-structured data efficiently [1–3] . The recently emerged 

raph signal processing (GSP) techniques provide efficient solu- 

ions to deal with the irregularities in real applications such as 

n modeling brain functional connectivity [5] , spatial temperature 

ata [6] , transportation flows [7] , monitoring 5G signal strength [8] , 

ensor networks in smart cities [9] , structuring geometric data 

10] , and modeling transportation flows [7] . GSP provides, in the 

raph domain, classical discrete signal processing concepts through 

raph shift, graph convolution, graph Fourier transform (GFT), and 

raph wavelet transform; the basic classic filtering operations such 
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s low-pass, high-pass filters, and band-pass filters, or the notion 

f FIR and IIR filters exist in GSP as well [2,3,11,12] . GSP-based al- 

orithms have the capability of solving various classical machine 

earning tasks such as classification [13] and clustering [14] . GSP 

echniques are also seen in the foundation of spectral graphical 

eep learning algorithms, such as ChebNet [15] and graph convo- 

utional networks [13] , where nonlinear activations are combined 

ith GSP techniques to incorporate non-linear modelling capabil- 

ty into graphs. The GSP components in the graph neural networks 

rovide model interpretability, which was previously lacking in the 

on-graphical deep learning algorithms [4] . However, these algo- 

ithms can only handle static tasks that do not operate in real- 

ime; while many real-life data are not static which underlines the 

eed for online data processing techniques. 

In classical signal processing, online estimation of time-varying 

ignals is often accomplished using adaptive filters [16] . Adaptive 

SP algorithms are inspired by classical adaptive filters to per- 

orm online estimation of steady-state and time-varying graph sig- 

als through spectral methods [6,8,17,18] . Analogous to the famous 

daptive least mean squares (LMS) algorithm in classical adaptive 

ltering, the Graph least mean squares algorithm (GLMS) is pop- 

lar due to its simplicity by using l 2 -norm optimization which 

mplicitly makes the Gaussian noise assumption [8] . Other least- 

quares-based adaptive GSP algorithms such as the Graph normal- 

zed LMS (GNLMS) [6] and the Graph recursive least squares (GRLS) 
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G

lgorithm [17] are GSP analogues of classical adaptive filtering al- 

orithms developed for faster convergence. Recent attention has 

ocused on the distributed version of GSP algorithms [19,20] which 

erge the distributed GLMS algorithm with diffusion algorithms 

nd [21] gives a distributed version of the GRLS algorithm. Sim- 

larly, distributed kernel GLMS was introduced in [22] which ex- 

ended the linear graph adaptive algorithm to a nonlinear version. 

ecent studies have applied classical time-series analysis tech- 

iques, such as the ARMA models, to GSP [23] . To tackle the 

ime-varying nature of some real-world data, another line of work 

nown as Time-vertex Signal Processing was proposed to take into 

ccount the time-domain information [24] . This formulation com- 

ines DFT on the time series data and GFT on the graph. 

All these mentioned work implicitly make Gaussian noise as- 

umption. However, the ambient noise in various real-world appli- 

ations is non-Gaussian with impulsive characteristics which can 

e modeled by heavy-tailed distributions [25–29] . Least-squares- 

ased adaptive GSP algorithms, namely the GLMS, the GRLS, and 

he GNLMS, become unstable and diverge under impulsive noise 

ue to large or infinite variance [30] . The GRLS algorithm fur- 

her requires prior knowledge of the covariance matrix, which may 

ot be accessible in many situations [21] . In (non-Graph) adap- 

ive filtering, to effectively mitigate the influence of heavy-tailed 

on-Gaussian noise, the minimum absolute deviations (MAD) cri- 

erion and minimum dispersion criterion were used, which gave 

ise to the Sign or the least mean absolute deviation (LMAD) algo- 

ithm and the least mean p th power (LMP) algorithm respectively 

30,31] . Enriching the adaptation with a localised information- 

heoretic measure, the maximum correntropy criterion was intro- 

uced in adaptive signal processing which has demonstrated ro- 

ust regression and filtering results under impulsive noise [32,33] . 

owever, compared to the Sign or the LMAD algorithm the maxi- 

um correntropy algorithms have higher computation complexity 

ince the updates in the Sign or the LMAD algorithm require only 

 sign operation on the error term explaining the popularity of the 

ign algorithm in adaptive signal processing. In order to avoid the 

rawbacks of l 2 -norm optimization when the noise distribution is 

mpulsive and non-Gaussian in a multivariate data problem, the 

raph-LMP algorithm (GLMP) was proposed which assumes that 

he noise is symmetric α-stable distribution (S αS) [18] . This as- 

umption leads to the minimum dispersion criterion which can be 

ptimized via l p -norm minimization instead of l 2 -norm minimiza- 

ion and the resulting algorithm is a direct extension of the clas- 

ical LMP algorithm. Despite its generality for varying degrees of 

mpulsiveness of the noise, there are two drawbacks of the GLMP 

lgorithm: it requires additional computations to the already ex- 

ensive GLMS algorithm, and its parameter selection is still based 

n prior knowledge of the noise. 

In this paper, we propose a lower-cost alternative, namely the 

daptive Graph-Sign algorithm (G-Sign) as a graph extension of 

he classical adaptive sign error (SIGN) or the LMAD algorithm for 

ultivariate signals [16,31] . The proposed G-Sign algorithm is de- 

ived based on the minimum absolute deviations criterion which 

s a special case of the minimum least l p -norm optimization for 

p = 1 and leads to l 1 -norm optimization, which removes the need 

or prior knowledge of any noise parameters or noise model as- 

umption [34] . This allows the G-Sign algorithm to avoid the in- 

tability seen in the least-squares-based algorithms when estimat- 

ng graph signals under impulsive noise. In classical adaptive fil- 

ering, the SIGN algorithm is known for its simplicity and time 

fficiency compared to the LMS, LMP, and maximum correntropy 

lgorithms. This characteristic is inherited in the graph case: the 

-Sign algorithm further reduces computational complexity to es- 

imate a steady-state graph signal compared to the GLMP and the 

LMS algorithms, making the G-Sign algorithm time efficient. The 

-Sign algorithm is robust when estimating time-varying graph 
2 
ignals under impulsive noise, making it capable of performing on- 

ine graph signal estimation. Note that the GSP adaptive algorithms 

pdate the graph-signal estimates instead of the weights for the 

ata samples as done by classical adaptive algorithms. The desired 

arallelism of the inference in predicting the outcomes of typically 

ultiple hundreds of nodes is made possible by the graph ver- 

ion of the signal processing algorithms. Dimensionality reduction 

s achieved by localizing the graph signal by spatial sampling with 

arious sampling strategies and spectral bandlimitedness [17,35] . 

ntroducing a large number of weights that needs to be jointly op- 

imized is mainly avoided by preferring a data-centered approach 

n graph-based gradient methods. 

The remaining sections of this paper are organized as follows. 

he background information on GSP and noise modeling are in 

ection 2 . In Section 3 , we derive the G-Sign algorithm and an-

lyze its computational complexity. In Section 4 , we provide the 

rst-order and second-order steady-state stability analysis for the 

-Sign algorithm. The experimental studies and results are in 

ection 5 . Section 6 provides the conclusions. 

. Background 

.1. GSP preliminaries 

A graph G = (V, E ) is defined with a set of N nodes V =
 1 . . . v N , and a set of M edges E = e 1 . . . e M 

representing the con-

ections between nodes. In this paper, the graph G of interest is 

lways undirected and can be either weighted or unweighted. A 

raph signal x is a graph with a function value defined on the 

odes. The adjacency matrix A of the graph G represents the con- 

ectivity of the edges in E . The i j th entry of A is the edge weight

rom node v i to node v j when G is weighted or simply A i j = 1 

hen there is an edge between node v i and node v j when G is un-

eighted. For an undirected graph, the adjacency matrix A is sym- 

etric. If G is undirected and unweighted, the number of edges a 

ode v i has is the node degree d i , where we can formulate a di-

gonal matrix called the degree matrix D = diag (d 1 . . . d N ) . In the

eighted case, the degree of a node is the summation of all of the 

dge weights instead of simply counting the number of edges. The 

raph Laplacian matrix L , which combines the information from A 

nd D , is defined simply as L = D − A . 

The GFT is based on the eigenvector decomposition L = U�U 

T , 

here U is the orthonormal eigenvector matrix and � is the diag- 

nal matrix of eigenvalues λ = [ λ1 , . . . , λN ] 
T . The GFT transforms a 

raph signal x from spatial-domain to spectral domain by project- 

ng x onto U : s = U 

T x . Spectral-domain operations could be per- 

ormed similarly as in the classical Fourier transform case by defin- 

ng a filter H ( λ) and then applied using the convolution property 

f Fourier transform. A graph signal transformed to the spectral 

omain could utilize the inverse graph Fourier transform (IGFT) 

 = U s to transform back to the spatial domain. Here is a basic 

et complete GSP procedure to apply the filter to x and generate a 

rocessed graph signal x p = UH ( λ) U 

T x . A graph signal is sparse in

he spectral sense when it is bandlimited in the spectral domain. 

 bandlimiting filter � can be defined based on a frequency set 

, where H ( λ) = � = diag 
(
1 F 

(
λ
))

, with 1 F ( λi ) = 1 if λi ∈ F and

 otherwise. A graph signal with reduced number of nodes sam- 

led based on a node sampling set S ⊆ V is sparse in the spatial 

omain; D S is the sampling matrix and its only non-zero elements 

re given with D S ii = 1 ∀ v i ∈ S [17] . Both D S and � are idempotent

nd self-adjoint matrices. 

.2. Impulsive distributions 

Algorithms based on least-squares estimation are based on the 

aussian noise assumption, which has proven to be an oversimpli- 
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Fig. 1. PDFs of various non-Gaussian distributions all with μ = 0 in logarithmic scale. 
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cation of noise in various real-world applications. In this paper, 

he S αS, Cauchy, Student’s t, and Laplace distributions are con- 

idered as additive noise to reflect the impulsiveness of real-life 

oises: in underwater communications the noise can be modeled 

sing Cauchy-Gaussian mixture [25] or using Student’s t distribu- 

ion [26] , in powerline communications and in sensing applications 

uch as source localization the noise is modeled using α-stable 

istributions [27,36] , in carbon nanotube detectors the electrical 

oise follows Cauchy distribution [28] , and in [29] the noise in ma- 

rix factorization problems of computer vision tasks is assumed to 

ollow a mixture of Laplace distribution. The Probability Density 

unctions (PDF) of these non-Gaussian distributions are illustrated 

n Fig. 1 and are discussed in this section. As shown in Fig. 1 , in

ertain parameter set up of these distortions, heavy-tailed behavior 

s observed, which generate outliers in the data which can be con- 

idered as additive noise. Least squares based algorithms show un- 

table behavior under impulsive noise due to large or infinite vari- 

nce, therefore least l p -norm based methods were proposed which 

rovide more stable estimators [31,37] . 

The S αS distribution satisfies the generalized central limit theo- 

em and is governed by the characteristic exponent α, the location 

arameter μ, and the scale parameter γ . The mean of S αS is only

efined when α > 1 : with μ being the mean when 1 < α � 2 , and

he median when α < 1 . The variance of S αS is defined only when

= 2, and in the other cases the scale parameter is given by the 

ispersion [31] . Gaussian distribution is obtained by setting α = 2 , 

nd Cauchy distribution when α = 1 . From Fig. 1 a we can observe

hat the tail of the S αS distribution is algebraic and hence heavy 

xcept for α = 2 . The S αS has no analytic PDF for other α values

ut has the characteristic function 

(t) = exp { jμt − γ | t| α} . (1) 

The Student’s t distribution is a heavy-tailed distribution for es- 

imating the mean of Gaussian distribution under unknown vari- 

nce and small sample size. The Student’s t distribution is param- 

terised by degrees of freedom ν and can be defined as the dis- 

ribution of the location of the sample mean relative to the true 

ean, divided by the sample standard deviation. The distribution 

as infinite variance when 1 < ν � 2 , and undefined variance when 

� 1 . The Student’s t distribution becomes the Gaussian distribu- 

ion when ν = ∞ . Observing Fig. 1 b, we can see that the Student’s

 distribution is heavy-tailed other than the Gaussian case. The PDF 
3 
f Student’s t distribution is given by 

f (t ) = 

�
(

ν+1 
2 

)
√ 

νπ�
(

ν
2 

)
(

1 + 

t 2 

ν

) −ν+1 
2 

, (2) 

here � is the gamma function. 

The Cauchy distribution is heavy-tailed with mean and variance 

ndefined and is a special case of Student’s t distribution with the 

= 1 and of the S αS at α = 1 : 

f (t, γ ) = 

1 

πγ
[ 

1 + 

(
t−μα

γ

)2 
] . (3) 

n Fig. 1 c, it is clear that the Cauchy distribution is heavy-tailed 

hen compared to the Gaussian distribution. 

Finally, the Laplace distribution, or the double exponential dis- 

ribution, is a special case of generalized Gaussian distribution and 

s characterised by the location parameter μ and the scale param- 

ter b. The PDF of the Laplace distribution can be expressed as 

f (t, μ, b) = 

1 

2 b 
exp 

(
−| t − μ| 

b 

)
. (4) 

ooking at Fig. 1 d, we can see that the tail of the Laplace distribu-

ion gets heavier when b increases. 

. Derivation and complexity analysis of the adaptive G-sign 

lgorithm 

Let us consider a bandlimited graph signal x 0 ⊆ R 

N and its 

oisy observation y [ k ] = D S ( x 0 + w [ k ] ) , where partial observations 

re modeled using a sampling matrix D S , and k represents the k th 

iscrete time step or iteration ranging from 0 to k max . w [ k ] is the 

oise which obeys the assumption below. 

ssumption 1. The noise w [ k ] is a zero-mean (or zero-median 

hen the mean is undefined) random variable and serves as addi- 

ive noise that is i.i.d. among N different nodes and across different 

 max time steps. 

The computation U�U 

T can be reduced by defining U F = U�
hen dropping the all zeros columns, resulting in U F U 

T 
F x = B x [17] . 

or a perfectly bandlimited graph signal x 0 with frequency bands 

, x 0 = B x 0 [17] . In GLMS, the cost function is a convex optimiza-

ion problem that aims to minimize the error between y [ k ] and 
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Table 1 

Computational complexity analysis. 

GLMS GLMP G-Sign 

Addition N 2 + N N 2 + 2 N N 2 + | S| 
Multiplication N 2 + 2 N N 2 + 3 N N 2 + N + | S| 
pth power 0 N 0 

Sign( ·) 0 N | S| 
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t

x

T

i

(

 S B ̂

 x [ k ] , where ˆ x [ k ] is the current step estimate of x 0 : 

 

(
ˆ x [ k ] 

)
= E 

∥∥y [ k ] − D S B ̂ x [ k ] 
∥∥2 

2 
. (5) 

n order to make one-step-ahead prediction, the spatial-domain 

pdate can be derived by stochastic gradient descent: 

ˆ 
 [ k + 1 ] = 

ˆ x [ k ] + μlms BD S ( y [ k ] − ˆ x [ k ] ) , (6) 

here μlms is the step size. 

Even though the GLMS algorithm is simple, it is not time ef- 

cient and suffers from instability. The GLMP algorithm is an ex- 

ension of the GLMS algorithm and has stable estimation perfor- 

ance compared to GLMS when estimating a graph signal under 

 αS noise but has additional computational complexity [18] . In 

lassical adaptive filtering, the LMS algorithm is used extensively 

ue to its simplicity of implementation, and the Sign-Error algo- 

ithm or the LMAD algorithm is an extension of the LMS algo- 

ithm to further increase the run-speed and decrease the algorithm 

omplexity, with additional robustness gained by the l 1 -norm cost 

unction. To improve the time-efficiency and robustness of adaptive 

SP algorithms under impulsive noise, we use a special case of the 

inimum dispersion criterion to form the cost function reducing 

t to a l 1 -norm optimization problem as in the LMAD algorithm in 

ne-dimensional adaptive filtering [31] : 

 

(
ˆ x [ k ] 

)
= E 

∥∥y [ k ] − D S B ̂ x [ k ] 
∥∥1 

1 
. (7) 

 1 -norm error function provides a very plausible choice when the 

istribution is S αS, Cauchy, Laplace, or Student’s t, with unknown 

ensity parameters [37] . The cost function (7) can be viewed as 

ecovering the mean x 0 from distribution y [ k ] and is LMAD sense 

ptimal for S αS and Cauchy noise. Eq. (7) is also the optimal Maxi-

um Likelihood Estimator for parameter estimation in Laplace dis- 

ribution. Using the bandlimitedness property B ̂

 x [ k ] = 

ˆ x [ k ] , the up- 

ate function of the G-Sign algorithm is obtained by stochastic gra- 

ient as in (6) 

ˆ 
 [ k + 1 ] = 

ˆ x [ k ] − μs 
∂ ‖ 

y [ k ] −D S B ̂ x [ k ] ‖ 

1 

1 

∂ ̂ x [ k ] 

= 

ˆ x [ k ] + μs BD S Sign 

(
D S 

(
y [ k ] − ˆ x [ k ] 

))
. 

(8) 

he Sign(.) function in the update equation results from taking the 

erivative of the l 1 -norm cost function with the consideration of 

he point of discontinuity of the derivative at 0. This makes the 

pdate function resemble the form seen in the weight update of 

lassical LMAD or Sign-Error algorithm [16,31] . A step size parame- 

er μs is added by following classical adaptive filtering convention 

o control the amount of update. The i th 0 in the diagonal of D S 
orresponds to a 0 in the i th element of sign (D S 

(
y [ k ] − ˆ x [ k ] ) 

)
. So, 

e can safely refactor (8) into 

ˆ 
 [ k + 1 ] = 

ˆ x [ k ] + μs B Sign 

(
D S 

(
y [ k ] − ˆ x [ k ] 

))
. (9) 

This fixed amount of update from the minimum dispersion cri- 

erion is unaffected by impulsive noise because Sign( ·) is only de- 

ned between -1 and 1, which clips the amplitude of extreme 

oise outliers [31,38] . In the GRLS algorithm, the update contains 

he covariance matrix of the noise [17,21] . In the GLMP algorithm, 

he exponent p of the update term is determined based on α of 

he S αS noise [18] . Unlike the algorithms that select the parame- 

ers using prior information from noise statistics, the G-Sign algo- 

ithm requires no prior information to determine the only parame- 

er μs , which is in correspondence with the classical LMAD or the 

ign-Error algorithm [34] . 

Eq. (9) reduces the number of operations by 2(N − |S| ) because 

he zeros in D S make Sign 

(
D S 

(
y [ k ] − ˆ x [ k ] 

))
sparse. The Sign( ·) op- 

ration essentially compares the non-zero elements in S , where in 

he worst case y [ k ] = 

ˆ x [ k ] it compares all the digits of ˆ x [ k ] and y [ k ] , 

ithout performing and algebraic operation. Since ˆ x [ k ] is a noisy 
4 
stimation of an observation y [ k ] , this worst case ˆ x [ k ] = y [ k ] is un- 

ikely to happen. The comparison of the computational complexity 

f our G-Sign algorithm to GLMS and GLMP algorithm is in Table 1 .

. Convergence analysis under steady-State estimation 

To estimate the steady-state performance of the G-Sign algo- 

ithm, we provide two analyses of the update function (9) using 

he Mean Squared Deviations (MSD) and the Mean Absolute Devi- 

tions (MAD). Based on a second-order analysis of the G-Sign al- 

orithm, the MSD at step k is calculated by: 

SD [ k ] = E 

∥∥ˆ x [ k ] − x 0 
∥∥2 

. (10) 

t is worth mentioning that the GLMS algorithm in [8] and the 

LMP algorithm in [18] both use the same MSD metric shown in 

10) . The MAD at step k is used for first-order analysis and is de-

ned as 

AD [ k ] = E 

∣∣ˆ x [ k ] − x 0 
∣∣. (11) 

rior to the analyses, we first make two assumptions for the con- 

itions to conduct the MSD analysis and the MAD analysis. 

ssumption 2. The MSD analysis of the G-Sign algorithm is ob- 

ainable when the noise w [ k ] has finite variance. 

In Section 4.1 a second-order analysis is conducted based on the 

pdate function (9) when Assumption 2 holds true. In assumption 

 , we assumed that w [ k ] is additive, so this means that the second-

rder analysis of (9) might be infinite without further constraint on 

he second order statistics of w [ k ] . In the context of this paper, the

SD analysis is for the cases where the noise is described by im- 

ulsive distributions which possess finite variance, such as general- 

zed Gaussian distribution or some cases of Student’s t distribution. 

ote that the Sign( ·) function will clip the actual estimation output 

ˆ 
 [ k + 1] in (9) , so a MSD analysis is possible on the actual output

hen executing the algorithm. 

ssumption 3. The MAD analysis is obtainable when the differ- 

nce ˆ x [ k ] − x 0 can be calculated. 

Looking at the MAD definition in (11) , it is clear that the MAD 

nalysis of (9) is related to the first-order statistics of w [ k ] . In as-

umption 1 , we assumed that w [ k ] has finite first-order statistics; 

his means that we can always conduct the MAD analysis for the 

-Sign algorithm. In the context of this paper, we provide the MAD 

nalysis for those noise distributions that possess infinite variance. 

.1. Mean-squared deviations stability analysis under steady-state 

stimation 

Let the error of estimating x 0 at step k be ˜ x [ k ] = ˆ x [ k ] − x 0 , then

he error of the update (9) is 

˜ 
 [ k + 1 ] = 

˜ x [ k ] + μs B Sign ( D S ( w [ k ] − ˜ x [ k ] ) ) . (12) 

he term w [ k ] − ˜ x [ k ] is unlikely to be zero due to the estimation 

naccuracy and the noise, then Sign( w [ k ] − ˜ x [ k ] ) = h ( w [ k ] − ˜ x [ k ] ) = 

 

w [ k ] − ˜ x [ k ] ) / | w [ k ] − ˜ x [ k ] | for w [ k ] − ˜ x [ k ] 	 = 0 ; here the division 
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i

p

s

s the element-wise division. For spectral analysis, (12) is trans- 

ormed to the spectral domain using GFT by multiplying U 

T 
F on 

oth sides of (12) : 

 

 [ k + 1 ] = ̃

 s [ k ] + μs U 

T 
F D S h ( w [ k ] − ˜ x [ k ] ) , (13) 

here ˜ s [ k ] is the GFT of ˜ x [ k ] . 

The error or the deviation from the ground-truth value in the 

ean-square sense can be obtained by taking the expectation of 

 2 -norm squared (13) , leading to 

 ‖ ̃

 s [ k + 1 ] ‖ 

2 = E ‖ ̃

 s [ k ] ‖ 

2 + E ‖ μs U 

T 
F D S h ( w [ k ] − ˜ x [ k ] ) ‖ 

2 . (14)

onsidering that w [ k ] 
 ˜ x [ k ] when k is large, we use the first- 

rder Taylor series approximation of h ( w [ k ] − ˜ x [ k ] ) around 

˜ x [ k ] = 0 

o split the RHS of (14) into the error caused by noise and er-

or caused by algorithm estimation, resulting in h ( w [ k ] − ˜ x [ k ] ) ≈
 ( w [ k ] ) − ˜ x [ k ] h 

′ 
( w [ k ] ) which can be seen as a sigmoid function 

pproximation to the sign algorithm which makes it differentiable. 

sing the inverse GFT, ˜ x [ k ] can be written as U F ̃  s [ k ] and (14) be- 

omes 

 ‖ ̃ s [ k + 1 ] ‖ 2 = E ‖ ̃ s [ k ] ‖ 2 + E ‖ μs U 

T 
F D S 

(
h ( w [ k ] ) − U F ̃  s [ k ] h 

′ 
( w [ k ] ) 

)‖ 2 
= E ‖ ̃ s [ k ] ‖ 2 � + μ2 

s E ‖ U 

T 
F D S R w w [ k ] ‖ 2 , 

(15) 

here ‖ ̃ s [ k ] ‖ 2 � is the weighted Euclidean norm 

˜ s T [ k ] �˜ s [ k ] and �
an be expressed as 

= 

(
I − μs U 

T 
F D S R p U F 

)T (
I − μs U 

T 
F D S R p U F 

)
. (16) 

he expectation of the element-wise division 1 / | w [ k ] | in h ( w [ k ] )
an be approximated using the FLOM E | w [ k ] | −p as seen in the

LMP algorithm [18] , where p is modified from 1 to 0.99 which 

ives us R p = (1 − p) E | w [ k ] | −p I , and R w 

= E | w [ k ] | −p I . Equation (15)

an be factorized using the trace trick E { X 

T YX } = Tr (E { XX 

T Y } ) : 
 ‖ ̃

 s [ k + 1 ] ‖ 

2 = E ‖ ̃

 s [ k ] ‖ 

2 
� + μ2 

s Tr 
(
U 

T 
F D S CD S U F 

)
, (17) 

here C = E ‖ R w 

w [ k ] ‖ 2 is the covariance matrix of R w 

w [ k ] and has

 similar structure to the partial correlation matrix or the normal- 

zed covariance matrix of w [ k ] . In Assumption 1 we assumed that 

he noises across different nodes are i.i.d., so the correlation of the 

oise between two different nodes is zero, leading to C = I . Com-

ining with the idempotent and self-adjoint property of the sam- 

ling matrix D S , (17) can be simplified to 

 ‖ ̃

 s [ k + 1 ] ‖ 

2 = E ‖ ̃

 s [ k ] ‖ 

2 
� + μ2 

s Tr 
(
U 

T 
F D S U F 

)
. (18) 

sing the properties Tr { YX } = vec 
(
X 

T 
)T 

vec ( Y ) and vec ( XYZ ) = 

Z 

T 
� X 

)
vec ( Y ) , (18) can be written into a recursive relationship 

tarting from time step 0: 

 ‖ ̃

 s [ k + 1 ] ‖ 

2 = E ‖ ̃

 s [ 0 ] ‖ 

2 
�k + μ2 

s 

∑ k 
i =0 Tr 

(

i G 

)
= E ‖ ̃

 s [ 0 ] ‖ 

2 
�k + μ2 vec ( G ) 

T ∑ k 
i =0 Q 

i vec ( I ) , 
(19) 

here ˜ s [ 0 ] is the error at k = 0 , G = U 

T 
F D S U F , and Q = 

I − μs U 

T 
F D S R p U F 

)T 
�

(
I − μs U 

T 
F D S R p U F 

)
. From (19) , we see that 

 ‖ ̃ s [ k + 1 ] ‖ 2 converges to a steady value if the RHS of (19) con-

erges. 

Considering (16) , when the initial error ˜ s [ 0 ] is bounded, we de- 

and that the weighted Euclidean norm E ‖ ̃ s [ 0 ] ‖ 2 
�k 

converges to 

ero at large k , requiring ‖ (I − μs U 

T 
F D S R p U F ) ‖ < 1 . Following this

ondition, the summation term of the RHS of (19) will be a geo- 

etric series that converges to a constant value. For a diagonal- 

zable matrix X of size N × N and a vector z of size N, the prop-

rty ‖ Xz ‖ 2 = 

∑ 

λi z i results in the inequality ‖ X ‖ ≤ | λmax | . Here

 λi , i = 1 . . . N} are the eigenvalues of X and λmax is the largest

igenvalue of X . Let X = U 

T 
F D S R p U F and use the above property;

atisfying the condition ‖ (I − μs U 

T D S R p U F ) ‖ < 1 is equivalent to
F 

5

atisfying the condition 0 < | 1 − μs λmax | < 1 . Since the parameter

s is the step size, it should always have a positive value. Know- 

ng that λmax is the maximum eigenvalue of U F 
T D S R p U F , λmax is 

ositive because the FLOM calculated in R p is positive. As a result, 

he error of the G-Sign algorithm will converge to a steady value 

y choosing the only free parameter μs to satisfy the inequality 

 < | 1 − μs λmax | < 1 , leading to the condition 

 < μs < 

2 

λmax 
. (20) 

ven though the condition (20) has a structure similar to the con- 

ergence condition seen in GLMS, the bound 2 /λmax is obtained 

sing a different expression than the one for GLMS. This bound 

s derived based on the Sign( ·) update of (9) that originated from 

he non-Gaussian noise assumption and the l 1 -norm optimization 

roblem (7) . Under condition (20) , the G-Sign algorithm has a sta- 

le MSD behavior. 

As k → ∞ and μs satisfies (20) , the difference between 

˜ s [ k ] and 

 

 [ k ] : lim k →∞ ̃

 s [ k ] = lim k →∞ ̃

 s [ k + 1 ] . Using the energy conservation 

roperty of GFT seen in the GLMS in [8] , which is a direct ex-

ension from the energy conservation of the classical LMS proven 

n [39] , the relationship between the spatial domain MSD and 

he spectral domain MSD is lim k →∞ 

E ‖ ̃ x [ k ] ‖ 2 = lim k →∞ 

E ‖ ̃ s [ k ] ‖ 2 . 
n GFT, this energy preserving property (a special case of Par- 

eval’s relation), can be easily proven using the property of or- 

honormal basis U 

T = U 

−1 we have in Section 2 , where ‖ ̃ s [ k ] ‖ 2 =
U 

T ˜ x [ k ] 
)T 

U 

T ˜ x [ k ] = ‖ ̃ x [ k ] ‖ 2 [11] . Revisiting (19) , after selecting a μs 

hat satisfies (20) , the theoretical steady-state MSD can be calcu- 

ated: 

SD [ k ] = lim k →∞ 

E ‖ ̃

 x [ k ] ‖ 

2 = lim k →∞ 

E ‖ ̃

 s [ k ] ‖ 

2 

= μ2 
s vec ( G ) 

T ( I − Q ) 
−1 vec ( I ) . 

(21) 

.2. Mean-Absolute deviations stability analysis under steady-state 

stimation 

The MSD analysis of Section 4.1 may not be applicable for cer- 

ain noise statistics considered in the paper; we also derive a MAD 

nalysis for the G-Sign algorithm under steady-state estimation. To 

ope with the spectral domain analysis in Section 4.1 , we will con- 

uct a first-order statistics analysis using the spectral-domain MAD 

ased on (13) ; it can be factored into the following error update 

quation: 

 

 [ k + 1 ] = 

(
I − μs U 

T 
F D S R p U F 

)
˜ s [ k ] + μs U 

T 
F D S R w 

w [ k − 1] 

= �k 
1 ̃

 s [ 0 ] + μs 

∑ k 
i =0 �

k 
1 U 

T 
F D S R w 

w [ k − i ] , 
(22) 

here �1 = 

(
I − μs U 

T 
F D S R p U F 

)
. By taking the limit of the ex- 

ected absolute value of (22) as k → ∞ and using the same ap-

roximation for R p and R w 

in Section 4.1 , the spectral domain ab- 

olute error update can be expressed as 

lim 

 →∞ 

E | ̃ s [ k ] | = lim 

k →∞ 

E 

∣∣∣∣∣�k 
1 ̃ s [ 0 ] + μ

k ∑ 

i =0 

�i 
1 U 

T 
F D S 1 

∣∣∣∣∣, (23) 

here E { R w 

w [ k − 1] } ≈ 1 for p = . 99 and 1 is an all-ones vector

f size N × 1 . For the RHS of (23) to converge, it requires that

 (I − μs U 

T 
F D S R p U F ) ‖ < 1 , so that the summation becomes a ge-

metric series and �k 
1 ̃

 s [ 0 ] converges to zero for a bounded 

˜ s [ 0 ] . 

his condition is the same as the MSD case in Section 4.1 , which

ill lead to condition (20) . 

. Experimental results 

We would like to test the performance of the G-Sign algorithm 

n estimating graph signals under impulsive noise. Steady-state ex- 

eriments are conducted in Sections 5.1 –5.3 using the random sen- 

or graph generated by Python package PyGSP shown in Fig. 2 with 
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Fig. 2. The graph signal of a sensor network and its topology. 

Fig. 3. The first time instance of a real time-varying graph signal and its graph 

topology. 
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Table 2 

Run time comparison of steady-state experiments. 

S αS Cauchy Student’s t Laplace 

GLMS 0.0307(s) 0.0289(s) 0.0313(s) 0.0292(s) 

GLMP 0.0462(s) 0.0468(s) 0.0340(s) 0.0339(s) 

G-Sign 0.0055(s) 0.0062(s) 0.0059(s) 0.0058(s) 
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 = 50, bandlimited frequencies |F| = 20 , and greedy sampling 

trategy in [6] with |S| = 30. A real time-varying graph signal with 

he topology shown in Fig. 3 is estimated in Section 5.4 . The graph

ignal in Fig. 3 represents hourly temperature recorded across the 

.S. at 205 different locations [40] . We use geography-based graph 

eneration with 8 nearest neighbors seen in [6] to form the topol- 

gy shown in Fig. 3 with N = 205 . In the experiment, the sampling

echnique is the same greedy strategy as in [6] with |S| = 130 

nd |F| = 125 . All the experiments are averaged over 100 indepen- 

ent runs. The experiments were conducted in MATLAB 2020b on 

 computer with AMD Ryzen 5 3600 CPU and 32GB of RAM. 

.1. The effect of the step size parameter 

In the G-Sign algorithm the step size μs is the only user-defined 

arameter. We would like to observe the effect of changing the 

alue of μs . The experiment is conducted using the graph signal 

hown in Fig. 2 , and the graph signal is corrupted by S αS noise

ith α = 1 . 06 and γ = 0 . 1 . We tested four different values of μs 

nd run the G-sign algorithm for k max = 30 0 0 iterations. The per-

ormance of the G-Sign algorithm is measured comparing the out- 

ut graph signal estimation with the clean bandlimited graph sig- 

al using the MSD defined in (10) and the MAD defined in (11) . 

Both the MAD and the MSD of this experiment are shown in 

ig. 4 . We can see from Fig. 4 that as μs decreases, the G-Sign

lgorithm will get more accurate but will also require more itera- 

ions to converge to a steady value. It can also be confirmed that 
6

he MAD and the MSD performance of the G-Sign algorithm shares 

he same behavior. 

.2. Steady-state MSD under non-Gaussian noises 

The G-Sign algorithm is compared with the GLMS algorithm 

nd the GLMP algorithm for estimating a partially observed steady- 

tate graph signal under S αS, Cauchy, Student’s t, and Laplace 

oises. The aim is to compare the stability of estimation, the iter- 

tions until convergence, and the run-time. In order to fairly com- 

are the algorithms under each noise scenario, the step sizes are 

uned so the algorithms behave similarly in MSD when there is a 

table estimation. Notice that S αS becomes Cauchy when α = 1, 

nd the p parameter of the GLMP algorithm is defined only for 

 < p < 2 with p < α, so we test the GLMP algorithm under a near

auchy S αS noise with α = 1 . 06 with p = α − 0 . 05 (as suggested

n [18] ) for the Cauchy experiment. For the experiment under S αS 

oise, p = α − 0 . 05 for the GLMP algorithm, and at other noise dis-

ributions we set p = 1 . 5 for the GLMP algorithm. The MSD of the

xperiments is in Fig. 5 with the theoretical MSD calculated using 

21) . The run-time of running k max = 2400 iterations of each algo- 

ithm for different experiments is in Table 2 . 

From Fig. 5 , we can see that the GLMS algorithm is unstable 

hen estimating the graph signal under S αS, Cauchy, and Student’s 

 noise. This instability is introduced by the heavy tail behavior 

f the noises [37] . In Fig. 5 d, the GLMS algorithm is stable under

aplace noise but requires about 5 times the run-time that the G- 

ign algorithm needs to converge. 

The G-Sign algorithm behaves similarly to the GLMP algorithm 

nder Cauchy/near Cauchy noise in Fig. 5 b because both algorithms 

re derived based on the minimum dispersion criterion. Under 

 αS noise, even though the iterations to reach the same steady- 

tate MSD for G-Sign algorithm and GLMP algorithm in Fig. 5 b are 

200 iterations and 650 iterations respectively, when looking at 

able 2 we see that the G-Sign algorithm only takes 1/8 the time 

hat the GLMP algorithm needs to complete the experiment. The 

SD performance of the G-Sign algorithm matches the theoreti- 

al results under the four impulsive noises. In Table 2 , we see that

he G-Sign algorithm has the fastest run-time under all scenarios, 

hich is in correspondence with the analysis in Table 1 that the G- 

ign algorithm has the lowest computational complexity. Combin- 

ng with Fig. 5 , we conclude that for steady-state graph signal es- 

imation with missing node values under non-Gaussian noise, the 

roposed G-Sign algorithm is able to make a stable estimation and 

aster run-time compared to the GLMS algorithm and the GLMP 

lgorithm. 

.3. Steady-State MAD under non-Gaussian noises 

In this section, we would like to observe the MAD performance 

f the G-Sign algorithm under S αS noise with α = 1 . 5 and Cauchy

oise due to the fact that these two noise settings in Section 5.2 do

ot have a finite mean-squared statistics. The MAD results of these 

wo noises are shown in Fig. 6 , which are calculated simultane- 

usly along with the MSD in Fig. 5 a and b. From Fig. 6 , we can

bserve that the MAD performance of the G-Sign algorithm under 

 αS and Cauchy noises are stable, while the GLMS does not con- 

erge. 
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Fig. 4. MAD and MSD performances for estimating a steady-state graph signal under S αS noise using different μs . 

Fig. 5. theoretical and experimental MSDs for steady-state graph signal estimates under different noises. 

Fig. 6. MAD performances for estimating a steady-state graph signal under different noises. 
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.4. Time-varying estimation under impulsive noise 

In this section, the G-Sign algorithm is used to estimate a time- 

arying graph signal corrupted by noise modeled by S αS, Cauchy, 

tudent’s t, and Laplace distributions. The G-Sign algorithm is com- 

ared to the GLMP and GLMS algorithms. The duration of this 

ime-varying graph signal is 95 hours, making k max = 95 . At each 

teration each adaptive GSP algorithms outputs an online estimate 
7 
f the graph signal. Again, for the Cauchy experiment we run the 

LMP algorithm under a near Cauchy S αS noise with α = 1 . 06

ith p = α − 0 . 05 . An illustration of one time step of the graph

ignal is shown in Fig. 3 . To make a fair comparison, the step sizes

re μs = 1 . 5 for all the algorithms. 

Fig. 7 illustrates the estimation of one selected node with a 

ime-varying graph signal. Notice that the GLMS algorithm is again 

nstable under S αS, Cauchy, and Student’s t noises, whereas the G- 
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Fig. 7. Estimation for one selected node from a time-varying graph signal under different noises. 

Table 3 

Run time comparison of time-varing experiments. 

S αS Cauchy Student’s t Laplace 

GLMS 0.0173(s) 0.0174(s) 0.0169(s) 0.0170(s) 

GLMP 0.0196(s) 0.0198(s) 0.0192(s) 0.0189(s) 

G-Sign 0.0028(s) 0.0026(s) 0.0028(s) 0.0027(s) 
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[

ign algorithm is not influenced by any of these impulsive noises. 

he run-times for GLMS, GLMP, and G-Sign algorithms to finish this 

xperiment are shown in Table 3 . From Table 3 , we can see that

he G-Sign algorithm remains the fastest among all compared al- 

orithms under the time-varying setting. From Fig. 7 and the run- 

ime comparisons, we conclude that the G-Sign algorithm is able 

o track a time-varying graph signal under non-Gaussian noise in 

 time-efficient manner. 

. Conclusion 

In this paper, we proposed the G-Sign algorithm for online es- 

imation of partially observed steady-state and time-varying graph 

ignals under impulsive noise. The G-Sign algorithm is derived us- 

ng the minimum dispersion criterion which is stable and robust 

nder impulsive noise. Experimental results confirm that the G- 

ign algorithm is of low complexity, time-efficient and robust. 
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