Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/12266
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarakuş, Oktayen_US
dc.contributor.authorKuruoğlu, Ercan Enginen_US
dc.contributor.authorAchim, Alinen_US
dc.contributor.authorAltınkaya, Mustafa Azizen_US
dc.date.accessioned2022-08-05T08:19:14Z-
dc.date.available2022-08-05T08:19:14Z-
dc.date.issued2022-
dc.identifier.issn1545-598X-
dc.identifier.urihttps://doi.org/10.1109/LGRS.2022.3146370-
dc.identifier.urihttps://hdl.handle.net/11147/12266-
dc.description.abstractThis letter presents a new statistical model for urban scene synthetic aperture radar (SAR) images by combining the Cauchy distribution, which is heavy tailed, with the Rician backscattering. The literature spans various well-known models most of which are derived under the assumption that the scene consists of multitudes of random reflectors. This idea specifically fails for urban scenes since they accommodate a heterogeneous collection of strong scatterers such as buildings, cars, and wall corners. Moreover, when it comes to analyzing their statistical behavior, due to these strong reflectors, urban scenes include a high number of high amplitude samples, which implies that urban scenes are mostly heavy-tailed. The proposed Cauchy-Rician model contributes to the literature by leveraging nonzero location (Rician) heavy-tailed (Cauchy) signal components. In the experimental analysis, the Cauchy-Rician model is investigated in comparison to state-of-the-art statistical models that include $\mathcal {G}_{0}$ , generalized gamma, and the lognormal distribution. The numerical analysis demonstrates the superior performance and flexibility of the proposed distribution for modeling urban scenes.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.relation.ispartofIEEE Geoscience and Remote Sensing Lettersen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCauchy-Rician Modelen_US
dc.subjectSynthetic aperture radaren_US
dc.subjectUrban modelingen_US
dc.titleCauchy-Rician Model for Backscattering in Urban Sar Imagesen_US
dc.typeArticleen_US
dc.authorid0000-0001-8048-5850en_US
dc.institutionauthorAltınkaya, Mustafa Azizen_US
dc.departmentİzmir Institute of Technology. Electrical and Electronics Engineeringen_US
dc.identifier.wosWOS:000766267100009en_US
dc.identifier.scopus2-s2.0-85124096784en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1109/LGRS.2022.3146370-
dc.contributor.affiliationCardiff Universityen_US
dc.contributor.affiliationTsinghua-Berkeley Shenzhen Instituten_US
dc.contributor.affiliationUniversity of Bristolen_US
dc.contributor.affiliation01. Izmir Institute of Technologyen_US
dc.relation.issn1545-598Xen_US
dc.description.volume19en_US
dc.identifier.wosqualityQ1-
dc.identifier.scopusqualityQ1-
item.openairetypeArticle-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept03.05. Department of Electrical and Electronics Engineering-
Appears in Collections:Computer Engineering / Bilgisayar Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
CauchyRician_Model.pdfArticle3.67 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

5
checked on Dec 13, 2024

WEB OF SCIENCETM
Citations

5
checked on Dec 7, 2024

Page view(s)

780
checked on Dec 16, 2024

Download(s)

168
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.