Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/12231
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kandemir, Ayşe Çağıl | en_US |
dc.contributor.author | Dönmez, Fatma | en_US |
dc.contributor.author | Davut, Kemal | en_US |
dc.contributor.author | Kaplan Can, Hatice | en_US |
dc.date.accessioned | 2022-08-01T12:54:36Z | - |
dc.date.available | 2022-08-01T12:54:36Z | - |
dc.date.issued | 2022-07 | - |
dc.identifier.issn | 2728397 | - |
dc.identifier.uri | https://doi.org/10.1002/pc.26717 | - |
dc.identifier.uri | https://hdl.handle.net/11147/12231 | - |
dc.description.abstract | Biocompatible composite production was accomplished by utilizing two-level hierarchical approach for mechanical reinforcement. A well-known commodity polymer; low-density polyethylene (LDPE), which has high-fracture toughness, yet low strength and modulus was used as the main matrix material. As the first step of hierarchy, ductile LDPE was blended with brittle polyvinylpyrrolidone (PVP), which is an eco-friendly, nontoxic and biocompatible polymer. This resulted in slight decrease of strength and drastic reduction of toughness (%70), yet modulus was increased by 78%. As the second level of hierarchy, PVP composites were introduced in LDPE. Nano-scaled Halloysite clay and micro-scaled spherical Silica particles were utilized as additives in the aforementioned PVP composites. The reason for the choice of these particles is that they are nontoxic, low-cost and in the case of Halloysite; abundant in nature. Owing to the implementation of the second level; modulus improvement was further enhanced to 150%, with additional benefits of strength increase up to 17% and less reduction in fracture toughness (minimum 51% reduction). Dynamic mechanical analysis also supported these outcomes that storage modulus of composites are higher than both LDPE and LDPE-PVP blend. The proposed biocompatible composites in the end of this study would be utilized in biomedical applications necessitating mechanical improvements. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Wiley | en_US |
dc.relation.ispartof | Polymer Composites | en_US |
dc.rights | info:eu-repo/semantics/embargoedAccess | en_US |
dc.subject | Biocompatibility | en_US |
dc.subject | Blends | en_US |
dc.subject | Composites | en_US |
dc.title | Design and fabrication of polymer micro/nano composites with two-level mechanical reinforcing procedure | en_US |
dc.type | Article | en_US |
dc.authorid | 0000-0002-9860-881X | en_US |
dc.institutionauthor | Davut, Kemal | en_US |
dc.department | İzmir Institute of Technology. Materials Science and Engineering | en_US |
dc.identifier.wos | WOS:000791768700001 | en_US |
dc.identifier.scopus | 2-s2.0-85129355072 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1002/pc.26717 | - |
dc.contributor.affiliation | Ted Üniversitesi | en_US |
dc.contributor.affiliation | Hacettepe Üniversitesi | en_US |
dc.contributor.affiliation | Izmir Institute of Technology | en_US |
dc.contributor.affiliation | Hacettepe Üniversitesi | en_US |
dc.relation.issn | 2728397 | en_US |
dc.description.volume | 43 | en_US |
dc.description.issue | 7 | en_US |
dc.description.startpage | 4609 | en_US |
dc.description.endpage | 4625 | en_US |
dc.identifier.wosquality | N/A | - |
dc.identifier.scopusquality | N/A | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | embargo_20250701 | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
crisitem.author.dept | 03.09. Department of Materials Science and Engineering | - |
Appears in Collections: | Materials Science and Engineering / Malzeme Bilimi ve Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Polymer Composites-2022-Kandemir.pdf Until 2025-07-01 | Article | 4.6 MB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
5
checked on Nov 15, 2024
WEB OF SCIENCETM
Citations
4
checked on Oct 26, 2024
Page view(s)
8,584
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.