Please use this identifier to cite or link to this item:
Title: Novel biopolymer-based hydrogels obtained through crosslinking of keratose proteins using tetrakis(hydroxymethyl) phosphonium chloride
Authors: Yalçın, Damla
Top, Ayben
Izmir Institute of Technology
Izmir Institute of Technology
Keywords: Biopolymers
Chemical crosslinking
Issue Date: 2022
Publisher: Springer
Abstract: Merino wool obtained from the Karacabey region of Turkey was solubilized using peracetic acid oxidation. The wool and extracted wool proteins (keratose) were characterized using SEM, XRD, TGA, and FTIR analyses. SDS-PAGE result of the keratose indicated diffusive bands were populated between ~ 40 and ~ 55 kDa, corresponding to low-sulfur content α-keratose proteins. Chemically crosslinked hydrogels were prepared using the keratose and tetrakis(hydroxymethyl) phosphonium chloride (THPC). Storage moduli of the hydrogels prepared at 1:1, 1:2, and 1:4 keratose to THPC reactive group ratios were measured as 63 ± 22, 291 ± 21, and 804 ± 53 Pa, respectively. Crosslinking degrees of the hydrogels also affected the secondary structures of the keratose films obtained from the drying of the hydrogels. The hydrogel with the highest crosslinking density (1:4 gel) exhibited the lowest swelling ratio, whereas the one with the lowest crosslinking density (1:1 gel) disintegrated in deionized water within less than 6 h. CCK-8 tests using L929 mouse fibroblast cells showed that all the hydrogels promoted cell proliferation. These results suggest THPC crosslinked hydrogels prepared at the millimolar THPC concentrations are biocompatible scaffolds, which can be utilized in drug delivery and tissue engineering applications. Graphical abstract: [Figure not available: see fulltext.]
Appears in Collections:Chemical Engineering / Kimya Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
  Until 2025-07-01
Article2.77 MBAdobe PDFView/Open    Request a copy
Show full item record

CORE Recommender


checked on Feb 16, 2024


checked on Jan 27, 2024

Page view(s)

checked on Feb 26, 2024


checked on Feb 26, 2024

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.