Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/12193
Title: | L2[gaxfa1–xpbi3]pbi4 (0 ≤ X ≤ 1) Ruddlesden–popper Perovskite Nanocrystals for Solar Cells and Light-Emitting Diodes | Authors: | Güvenç, Çetin Meriç Tunç, İlknur Balcı, Sinan |
Keywords: | Colloids Formamidinium Guanidinium Ruddlesden−popper |
Publisher: | American Chemical Society | Abstract: | The main challenges to overcome for colloidal 2D Ruddlesden–Popper (RP) organo-lead iodide perovskite nanocrystals (NCs) are phase instability and low photoluminescence quantum yield (PLQY). Herein, we demonstrate colloidal synthesis of guanidinium (GA)-L2[GAPbI3]PbI4, formamidinium (FA)-L2[FAPbI3]PbI4, and GA and FA alloyed L2[GA0.5FA0.5PbI3]PbI4 NCs without using polar or high boiling point nonpolar solvents. Importantly, we show that optical properties and phase stability of L2[APbI3]PbI4 NCs can be affectively tuned by alloying with guanidinium and formamidinium cations. Additionally, the band gap of NCs can be rapidly engineered by bromide ion exchange in L2[GAxFA1–xPbI3]PbI4 (0 ≤ x ≤ 1) NCs. Our approach produces a stable dispersion of L2[FAPbI3]PbI4 NCs with 12.6% PLQY that is at least three times higher than the previously reported PLQY in the nanocrystals. Furthermore, L2[GAPbI3]PbI4 and L2[GA0.5FA0.5PbI3]PbI4 NC films exhibit improved ambient stability over 10 days, which is significantly higher than L2[FAPbI3]PbI4 NC films, which transform to an undesired 1D phase within 6 days. The colloidally synthesized guanidinium- and formamidinium-based 2D RP organo-lead iodide perovskite NCs with improved stability and high PLQY demonstrated in this study may find applications in solar cells and light-emitting diodes. Therefore, large A-site cation-alloyed 2D RP perovskite NCs may provide a new way to rationalize high-performance and stable perovskite solar cells and light-emitting diodes. | URI: | https://doi.org/10.1021/acsanm.1c03727 https://hdl.handle.net/11147/12193 |
ISSN: | 2574-0970 |
Appears in Collections: | Materials Science and Engineering / Malzeme Bilimi ve Mühendisliği Photonics / Fotonik Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
acsanm.1c03727.pdf Until 2025-07-01 | Article | 5.1 MB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
4
checked on Dec 21, 2024
WEB OF SCIENCETM
Citations
5
checked on Dec 21, 2024
Page view(s)
17,278
checked on Dec 16, 2024
Download(s)
2
checked on Dec 16, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.