Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/11884
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKılınççeker, Onuren_US
dc.contributor.authorTürk, Ercümenten_US
dc.contributor.authorBelli, Fevzien_US
dc.contributor.authorChallenger, Moharramen_US
dc.date.accessioned2021-12-27T07:53:32Z-
dc.date.available2021-12-27T07:53:32Z-
dc.date.issued2021-11-
dc.identifier.issn1619-1366-
dc.identifier.urihttps://doi.org/10.1007/s10270-021-00934-6-
dc.identifier.urihttps://hdl.handle.net/11147/11884-
dc.description.abstractAn ideal test is supposed to show not only the presence of bugs but also their absence. Based on the Fundamental Test Theory of Goodenough and Gerhart (IEEE Trans Softw Eng SE-1(2):156–173, 1975), this paper proposes an approach to model-based ideal testing of hardware description language (HDL) programs based on their behavioral model. Test sequences are generated from both original (fault-free) and mutant (faulty) models in the sense of positive and negative testing, forming a holistic test view. These test sequences are then executed on original (fault-free) and mutant (faulty) HDL programs, in the sense of mutation testing. Using the techniques known from automata theory, test selection criteria are developed and formally show that they fulfill the major requirements of Fundamental Test Theory, that is, reliability and validity. The current paper comprises a preparation step (consisting of the sub-steps model construction, model mutation, model conversion, and test generation) and a composition step (consisting of the sub-steps pre-selection and construction of Ideal test suites). All the steps are supported by a toolchain that is already implemented and is available online. To critically validate the proposed approach, three case studies (a sequence detector, a traffic light controller, and a RISC-V processor) are used and the strengths and weaknesses of the approach are discussed. The proposed approach achieves the highest mutation score in positive and negative testing for all case studies in comparison with two existing methods (regular expression-based test generation and context-based random test generation), using four different techniques.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofSoftware and Systems Modelingen_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectModel-based testingen_US
dc.subjectIdeal testen_US
dc.subjectMutation testingen_US
dc.subjectHardware description languageen_US
dc.subjectBehavioral modelen_US
dc.titleModel-based ideal testing of hardware description language (HDL) programsen_US
dc.typeArticleen_US
dc.authorid0000-0002-8421-3497en_US
dc.institutionauthorBelli, Fevzien_US
dc.departmentİzmir Institute of Technology. Computer Engineeringen_US
dc.identifier.wosWOS:000716923600001en_US
dc.identifier.scopus2-s2.0-85118838250en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1007/s10270-021-00934-6-
dc.contributor.affiliationUniversität Paderbornen_US
dc.contributor.affiliationEge Üniversitesien_US
dc.contributor.affiliation01. Izmir Institute of Technologyen_US
dc.contributor.affiliationUniversiteit Antwerpenen_US
dc.relation.issn1619-1366en_US
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ2-
item.fulltextWith Fulltext-
item.grantfulltextembargo_20250101-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:Computer Engineering / Bilgisayar Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
Kilincceker2021_Article.pdf
  Until 2025-01-01
Article (Makale)2.74 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

14,818
checked on Nov 18, 2024

Download(s)

4
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.