Please use this identifier to cite or link to this item:
Title: Behavior of Al4C3 particles during flotation and sedimentation in aluminum melts
Authors: Gökelma, Mertol
Storm Aarnaes, Trygve
Maier, Juergen
Renkel, Maria F.
Ekstrom, Kai Erik
Friedrich, Bernd
Tranell, Gabriella
Keywords: Oxide films
Publisher: Springer
Abstract: Al4C3 particles form during the primary production of aluminum via molten salt electrolysis due to the carbon solubility and direct contact between bath, metal, and carbon anodes. Additional Al4C3 may form during melt processing through direct contact between the melt and carbonaceous materials. As a result of their small size and similar density to aluminum, removal of aluminum carbide particles can be challenging. If not removed, carbides can produce inclusion defects or poor surface condition in aluminum products. The current work studies the removal and behavior of Al4C3 particles during flotation with different gas mixtures, as well as sedimentation. The interaction between carbide particles and Al2O3 films during the melt treatment processes was also studied and reported. Factsage thermochemical software was used to model the interactions at the interface of inclusions and bubbles covered by films. The highest degree of carbide removal was obtained after flotation with an H2O-containing argon gas mixture, where the carbide concentration dropped below the measured solubility limit of carbon at the corresponding temperature. Strong interaction between Al4C3 particles and Al2O3 films was observed during sedimentation which worked as an efficient removal method for the particles. Oxidation of carbides and formation of oxycarbides were suggested as the mechanisms promoting the attachment of carbides on oxide films.
ISSN: 1073-5615
Appears in Collections:Materials Science and Engineering / Malzeme Bilimi ve Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
Gökelma2021_Article.pdf2.7 MBAdobe PDFView/Open
Show full item record

CORE Recommender


checked on Apr 5, 2024


checked on Mar 23, 2024

Page view(s)

checked on Apr 15, 2024


checked on Apr 15, 2024

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.