Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/11832
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAyanzadeh, Aydın-
dc.contributor.authorYalçın Özuysal, Özden-
dc.contributor.authorPesen Okvur, Devrim-
dc.contributor.authorÖnal, Sevgi-
dc.contributor.authorTöreyin, Behçet Uğur-
dc.contributor.authorÜnay, Devrim-
dc.date.accessioned2021-12-02T18:16:17Z-
dc.date.available2021-12-02T18:16:17Z-
dc.date.issued2021-
dc.identifier.issn1300-0632-
dc.identifier.issn1303-6203-
dc.identifier.urihttps://doi.org/10.3906/elk-2105-244-
dc.identifier.urihttps://hdl.handle.net/11147/11832-
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/526977-
dc.description.abstractThe recently popular deep neural networks (DNNs) have a significant effect on the improvement of segmentation accuracy from various perspectives, including robustness and completeness in comparison to conventional methods. We determined that the naive U-Net has some lacks in specific perspectives and there is high potential for further enhancements on the model. Therefore, we employed some modifications in different folds of the U-Net to overcome this problem. Based on the probable opportunity for improvement, we develop a novel architecture by using an alternative feature extractor in the encoder of U-Net and replacing the plain blocks with residual blocks in the decoder. This alteration makes the model superconvergent yielding improved performance results on two challenging optical microscopy image series: a phase-contrast dataset of our own (MDA-MB-231) and a brightfield dataset from a well-known challenge (DSB2018). We utilized the U-Net with pretrained ResNet-18 as the encoder for the segmentation task. Hence, following the modifications, we redesign a novel skip-connection to reduce the semantic gap between the encoder and the decoder. The proposed skip-connection increases the accuracy of the model on both datasets. The proposed segmentation approach results in Jaccard Index values of 85.0% and 89.2% on the DSB2018 and MDA-MB-231 datasets, respectively. The results reveal that our method achieves competitive results compared to the state-of-the-art approaches and surpasses the performance of baseline approaches.en_US
dc.description.sponsorshipThis work has been supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant 119E578. The data used in this study is collected under the Marie Curie IRG grant (no: FP7 PIRG08-GA-2010-27697). Aydin Ayanzadeh's work is supported, in part, by Vodafone Turkey, under project no. ITUVF20180901P04 within the context of ITU Vodafone Future Lab R&D program.en_US
dc.language.isoenen_US
dc.publisherTÜBİTAK - Türkiye Bilimsel ve Teknolojik Araştırma Kurumuen_US
dc.relation.ispartofTurkish Journal of Electrical Engineering and Computer Sciencesen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSegmentationen_US
dc.subjectBreast canceren_US
dc.subjectConvolutional neural networksen_US
dc.subjectOptical microscopyen_US
dc.subjectPhase-contrast microscopyen_US
dc.subjectBrightfielden_US
dc.titleImproved cell segmentation using deep learning in label-free optical microscopy imagesen_US
dc.typeArticleen_US
dc.authorid0000-0003-0552-368X-
dc.authorid0000-0001-8333-4193-
dc.institutionauthorYalçın Özuysal, Özden-
dc.institutionauthorPesen Okvur, Devrim-
dc.institutionauthorÖnal, Sevgi-
dc.departmentİzmir Institute of Technology. Molecular Biology and Geneticsen_US
dc.identifier.volume29en_US
dc.identifier.startpage2855en_US
dc.identifier.endpage2868en_US
dc.identifier.wosWOS:000709712800006en_US
dc.identifier.scopus2-s2.0-85117246190en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.3906/elk-2105-244-
dc.identifier.trdizinid526977en_US
dc.identifier.wosqualityQ4-
dc.identifier.scopusqualityQ3-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept04.03. Department of Molecular Biology and Genetics-
crisitem.author.dept04.03. Department of Molecular Biology and Genetics-
Appears in Collections:Molecular Biology and Genetics / Moleküler Biyoloji ve Genetik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
TR Dizin İndeksli Yayınlar / TR Dizin Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
elk-29-si-1-18-2105-244.pdf3.19 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

2
checked on Nov 9, 2024

Page view(s)

42,150
checked on Nov 18, 2024

Download(s)

274
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.