Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/11786
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mayalı, Berkay | - |
dc.contributor.author | Şaylığ, Orkun | - |
dc.contributor.author | Yalçın Özuysal, Özden | - |
dc.contributor.author | Pesen Okvur, Devrim | - |
dc.contributor.author | Töreyin, Behçet Uğur | - |
dc.contributor.author | Ünay, Devrim | - |
dc.date.accessioned | 2021-12-02T18:16:11Z | - |
dc.date.available | 2021-12-02T18:16:11Z | - |
dc.date.issued | 2020 | - |
dc.identifier.isbn | 978-1-7281-8073-1 | - |
dc.identifier.uri | https://hdl.handle.net/11147/11786 | - |
dc.description | 2020 Medical Technologies Congress (TIPTEKNO) -- NOV 19-20, 2020 -- ELECTR NETWORK -- Biyomedikal ve Klinik Muhendisligi Dernegi, Izmir Ekonomi Univ, Izmir Katip Celebi Univ | en_US |
dc.description.abstract | Collective cell analysis from microscopy image series is important for wound healing research. Computer-based automation of such analyses may help in rapid acquisition of reliable and reproducible results. In this study phase -contrast optical microscopy image series of an in-vitro wound healing essay is manually delineated by two experts and its analysis is realized, traditional image processing and deep learning based approaches for automated segmentation of wound area are developed and their perlOrmance comparisons are carried out. | en_US |
dc.language.iso | tr | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 2020 Medical Technologies Congress (Tiptekno) | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Wound healing | en_US |
dc.subject | Phase-contrast optical microscopy | en_US |
dc.subject | Image processing | en_US |
dc.subject | Deep learning | en_US |
dc.title | Yara iyileşmesi mikroskopi görüntü serilerinin otomatik analizi - Bir ön-çalışma | en_US |
dc.title.alternative | Automated analysis of wound healing microscopy image series - A preliminary study | - |
dc.type | Conference Object | en_US |
dc.authorid | 0000-0003-4406-2783 | - |
dc.institutionauthor | Yalçın Özuysal, Özden | - |
dc.institutionauthor | Pesen Okvur, Devrim | - |
dc.department | İzmir Institute of Technology. Molecular Biology and Genetics | en_US |
dc.identifier.wos | WOS:000659419900001 | en_US |
dc.identifier.scopus | 2-s2.0-85099448181 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.wosquality | N/A | - |
dc.identifier.scopusquality | N/A | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | tr | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Conference Object | - |
crisitem.author.dept | 04.03. Department of Molecular Biology and Genetics | - |
crisitem.author.dept | 04.03. Department of Molecular Biology and Genetics | - |
Appears in Collections: | Molecular Biology and Genetics / Moleküler Biyoloji ve Genetik Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
Automated_Analysis_of_Wound.pdf | 298.33 kB | Adobe PDF | View/Open |
CORE Recommender
SCOPUSTM
Citations
2
checked on Nov 15, 2024
Page view(s)
28,586
checked on Nov 18, 2024
Download(s)
162
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.