Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/11785
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ayanzadeh, Aydın | - |
dc.contributor.author | Yalçın Özuysal, Özden | - |
dc.contributor.author | Okvur, Devrim Pesen | - |
dc.contributor.author | Önal, Sevgi | - |
dc.contributor.author | Töreyin, Behçet Uğur | - |
dc.contributor.author | Ünay, Devrim | - |
dc.date.accessioned | 2021-12-02T18:16:11Z | - |
dc.date.available | 2021-12-02T18:16:11Z | - |
dc.date.issued | 2020 | - |
dc.identifier.isbn | 978-1-7281-7206-4 | - |
dc.identifier.issn | 2165-0608 | - |
dc.identifier.uri | https://hdl.handle.net/11147/11785 | - |
dc.description | 28th Signal Processing and Communications Applications Conference (SIU) -- OCT 05-07, 2020 -- ELECTR NETWORK -- Istanbul Medipol Univ | en_US |
dc.description.abstract | The segmentation of cells is necessary for biologists in the morphological statistics for quantitative and qualitative analysis in Phase-contrast Microscopy (PCM) images. In this paper, we address the cell segmentation problem in PCM images. Deep Neural Networks (DNNs) commonly is initialized with weights from a network pre-trained on a large annotated data set like ImageNet have superior performance than those trained from scratch on a small dataset. Here, we demonstrate how encoder-decoder type architectures such as U-Net and Feature Pyramid Network (FPN) can be improved by an alternative encoder which pre-trained on the ImageNet dataset. In particular, our experimental results confirm that the image descriptors from ResNet-18 are highly effective in accurate prediction of the cell boundary and have higher Intersection over Union (IoU) in comparison to the classical U-Net and require fewer training epochs. | en_US |
dc.description.sponsorship | The data used in this study is collected under the Marie Curie IRG grant (no: FP7 PIRG08-GA-2010-27697). Aydin Ayanzadeh's work is supported, in part, by Vodafone Turkey, under project no. ITUVF20180901P04 within the context of ITU Vodafone Future Lab RD program. This work is in part funded by ITU BAP MGA-2017-40964. This work has been supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant 119E578. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 2020 28Th Signal Processing and Communications Applications Conference (SIU) | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Cell segmentation | en_US |
dc.subject | Phase-Contrast microscopy | en_US |
dc.subject | Deep learning | en_US |
dc.title | Deep learning based segmentation pipeline for label-free phase-contrast microscopy images | en_US |
dc.type | Conference Object | en_US |
dc.authorid | 0000-0003-4406-2783 | - |
dc.authorid | 0000-0002-8816-3204 | - |
dc.authorid | 0000-0002-9882-132X | - |
dc.institutionauthor | Yalçın Özuysal, Özden | - |
dc.institutionauthor | Okvur, Devrim Pesen | - |
dc.institutionauthor | Önal, Sevgi | - |
dc.department | İzmir Institute of Technology. Molecular Biology and Genetics | en_US |
dc.identifier.wos | WOS:000653136100278 | en_US |
dc.identifier.scopus | 2-s2.0-85100321434 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.authorwosid | Toreyin, Behcet Ugur/ABI-6849-2020 | - |
dc.authorwosid | Onal, Sevgi/AAO-8438-2021 | - |
dc.authorwosid | Ayanzadeh, Aydin/O-8380-2019 | - |
dc.identifier.wosquality | N/A | - |
dc.identifier.scopusquality | N/A | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Conference Object | - |
crisitem.author.dept | 04.03. Department of Molecular Biology and Genetics | - |
crisitem.author.dept | 04.03. Department of Molecular Biology and Genetics | - |
Appears in Collections: | Molecular Biology and Genetics / Moleküler Biyoloji ve Genetik Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
Deep_Learning_based_Segmentation_Pipeline.pdf | 1.02 MB | Adobe PDF | View/Open |
CORE Recommender
SCOPUSTM
Citations
3
checked on Nov 15, 2024
WEB OF SCIENCETM
Citations
2
checked on Nov 9, 2024
Page view(s)
28,518
checked on Nov 18, 2024
Download(s)
148
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.