Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/11755
Full metadata record
DC FieldValueLanguage
dc.contributor.authorİrtem, Pelin-
dc.contributor.authorİrtem, Emre-
dc.contributor.authorErdoğmuş, Nesli-
dc.date.accessioned2021-12-02T18:16:07Z-
dc.date.available2021-12-02T18:16:07Z-
dc.date.issued2019-
dc.identifier.isbn978-3-88579-690-9-
dc.identifier.issn1617-5468-
dc.identifier.urihttps://hdl.handle.net/11147/11755-
dc.descriptionInternational Conference of the Biometrics-Special-Interest-Group (BIOSIG) -- SEP 18-20, 2019 -- Darmstadt, GERMANY -- Gesellschaft Informatik e V, Biometr Special Interest Grp, Gesellschaft Informatik e V, Competence Ctr Appl Secur Technol e V, German Fed Off Informat Secur, European Assoc Biometr, TeleTrusT Deutschland e V, Norwegian Biometr Lab, European Commiss Joint Res Ctr, Inst Engn & Technol Biometr Journal, Fraunhofer Inst Comp Graph Res, Ctr Res Secur & Privacy, Inst Elect & Elect Engineersen_US
dc.description.abstractCreating and labeling data can be extremely time consuming and labor intensive. For this reason, lack of sufficiently large datasets for training deep structures is often noted as a major obstacle and instead, synthetic data generation is proposed. With their high acquisition and labeling complexity, this also applies to fingerprints. In the literature, a number of synthetic fingerprint generation systems have been proposed, but mostly for algorithm evaluation purposes. In this paper, we aim to analyze the use of synthetic fingerprint data with different levels of degradation for training deep neural networks. Fingerprint classification problem is selected as a case-study and the experiments are conducted on a public domain database, NIST SD4. A positive correlation between the synthetic data variation and the classification rate is observed while achieving state-of-the-art results.en_US
dc.description.sponsorshipThis work is supported by 2515 -COST (European Cooperation in Science and Techology) program of TUBITAK, with the project numbered 217E092.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2019 International Conference of The Biometrics Special Interest Group (Biosig 2019)en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFingerprint classificationen_US
dc.subjectSynthetic ground truthen_US
dc.subjectDeep learningen_US
dc.titleImpact of variations in synthetic training data on fingerprint classificationen_US
dc.typeConference Objecten_US
dc.departmentİzmir Institute of Technology. Computer Engineeringen_US
dc.identifier.volumeP-296en_US
dc.identifier.wosWOS:000682778500008en_US
dc.identifier.scopus2-s2.0-85075884298en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityQ4-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeConference Object-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:Computer Engineering / Bilgisayar Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
Impact_of_variations_in_synthetic.pdf344.25 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 9, 2024

Page view(s)

7,064
checked on Nov 18, 2024

Download(s)

160
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.