Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/11573
Title: Quantum Invariants of Knotoids
Authors: Güğümcü, Neslihan
Kauffman, Louis H.
Keywords: Knotoids
Quantum invariants
Knotoid diagrams
Publisher: Springer
Abstract: In this paper, we construct quantum invariants for knotoid diagrams in R-2. The diagrams are arranged with respect to a given direction in the plane (Morse knotoids). A Morse knotoid diagram can be decomposed into basic elementary diagrams each of which is associated to a matrix that yields solutions of the quantum Yang-Baxter equation. We recover the bracket polynomial, and define the rotational bracket polynomial, the binary bracket polynomial, the Alexander polynomial, the generalized Alexander polynomial and an infinity of specializations of the Homflypt polynomial for Morse knotoids via quantum state sum models.
URI: https://doi.org/10.1007/s00220-021-04081-3
https://hdl.handle.net/11147/11573
ISSN: 0010-3616
1432-0916
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
Gügümcü-Kauffman2021_Article.pdf1.61 MBAdobe PDFView/Open
Show full item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Dec 20, 2024

WEB OF SCIENCETM
Citations

4
checked on Dec 7, 2024

Page view(s)

42,514
checked on Dec 16, 2024

Download(s)

412
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.