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Abstract: In this paper, we construct quantum invariants for knotoid diagrams in R?.
The diagrams are arranged with respect to a given direction in the plane (Morse kno-
toids). A Morse knotoid diagram can be decomposed into basic elementary diagrams
each of which is associated to a matrix that yields solutions of the quantum Yang—
Baxter equation. We recover the bracket polynomial, and define the rotational bracket
polynomial, the binary bracket polynomial, the Alexander polynomial, the generalized
Alexander polynomial and an infinity of specializations of the Homflypt polynomial for
Morse knotoids via quantum state sum models.

1. Introduction

A Morse knotoid diagram is a knotoid diagram in the plane arranged with respect to the
bottom to top vertical direction of the plane so that every horizontal line meets the dia-
gram in at most one minimum, maximum or a crossing point. The plane where a knotoid
diagram lies, can be interpreted as the spacetime plane with time the vertical axis and
space the horizontal. Then, a Morse knotoid diagram can be interpreted as a vacuum
to vacuum process that includes creations of particles (cups), a finite number of inter-
actions among the particles (crossings) and annihilations of the particles (caps). These
events are associated with matrices with indices on diagrams (which can be interpreted
as spins on particles) and the probability amplitude of the vacuum to vacuum process
is obtained by summing the products of the amplitudes of each internal configuration
over all indices. In order to have a topological amplitude we make constraints so that
the amplitude remains invariant under the regular isotopy moves including the braiding
moves. Note that we use the word amplitude for motivation, as these amplitudes are not
necesarily physical and are not constrained to take values in the complex numbers.
Many knot/link invariants associated with quantum amplitudes have been constructed
so far. Prior to such knot and link invariants, C.N. Yang used this interpretation, in terms
of creations, annihilations and interactions, in a miniature model of quantum field theory.
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He created an equation, now called the Yang—Baxter equation, so that the amplitudes of
interacting particles would be the same for patterns with equivalent permutations. In the
braiding context the Yang—Baxter equation corresponds to the braiding relation. Thus a
matrix equation originating in a quantum physical model is useful for doing topology.

In our formulation of quantum invariants we use a given direction in the diagram
plane to stand for time so that the cups and caps and interactions can be seen to occur
in a temporal order. This can be formalized by a Morse function on the diagram, hence
the term Morse knotoids or Morse diagrams. It can also be formalized by the notion
of a category, and then time’s arrow becomes the arrow directions for the morphims in
the category. From a categorical point of view, knot, link and knotoid diagrams become
morphisms in a braided category. All of these points of view are useful and we will move
through all of them in our constructions.

Let us now give an outline of this paper. In Sect. 2 we introduce Morse knotoid
diagrams and the topological moves for them. In Sect. 2.2 we define a numerical invariant
for Morse knotoids that we call the rotation number and in Sect. 2.2.1 we define a
rotational extension of the Kauffman bracket polynomial for Morse knotoids. In Sect. 3
we study Morse knotoid diagrams via category theoretical descriptions. In Sect. 4 we
construct unoriented invariants for Morse knotoids in the form of a partition function,
such as the bracket partition function and the binary bracket polynomial. We show that
both invariants admit a state sum model that yields solutions to the Yang—Baxter equation.
In Sect. 5, we introduce a general schema to generate oriented quantum invariants for
Morse knotoids. By specializing this schema, we define the Alexander polynomial, the
generalized Alexander polynomial and an infinity of analogs of specializations of the
classical Homflypt polynomial.

2. Morse Knotoids

Definition 1 [29]. A knotoid diagram in R? or in S%, namely a planar knotoid diagram
and a spherical knotoid diagram, respectively, is a generic immersion of the unit interval
[0, 1] into R? or S, with the assumption that it contains only transversal double points
endowed with under/over information, and two distinct endpoints the leg and the head
as the images of 0 and 1, respectively. A knotoid diagram is endowed with a natural
orientation from its leg to its head.

In this section, we introduce a special class of planar knotoid diagrams, called Morse
knotoid diagrams.

Definition 2. A Morse knotoid diagram is a knotoid diagram in R?, equipped with a
height function, such that every horizontal line meets the knotoid diagram transversally
with at most one critical point. A critical point of the height function can be one of
the following: a crossing point of a classical crossing of the Morse knotoid diagram, a
minimum or a maximum of the curve with respect to the height function, or an endpoint
of the knotoid. We further assume that the arcs containing the endpoints are vertical
arcs in a neighborhood of the endpoints with respect to the height function. See 1 for an
example.

A multi-knotoid diagram in R? or in S? is a union of a knotoid diagram with a
number of knots [29] and the definition of a Morse knotoid diagram extends to Morse
multi-knotoid diagram directly.
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2.1. Isotopy moves on knotoid diagrams . Knotoid diagrams in R? are classified up to
the isotopy relation generated by the knotoid Reidemeister moves and plane isotopy.
See [1] for a classification table of knotoids in S2. Knotoid Reidemeister moves are
classical Reidemeister moves that take place in local disks free of the endpoints of
knotoid diagrams, see Fig. 2 for the move list. The endpoints of a knotoid diagram may
be displaced by the knotoid isotopy but It is forbidden to move an endpoint over or
under a strand. A knotoid in R? (or a planar knotoid) is an equivalence class of knotoid
diagrams in R?, considered up to the induced isotopy relation [29].

Definition 3. A knotoid diagram in R? or in § is called a knot-type knotoid diagram if
its endpoints lie in the same local region of the plane determined by the graph underlying
the knotoid diagram.

We will call a planar or spherical knotoid a knot-type knotoid if it admits at least
one representative diagram with endpoints lying in the same region, otherwise it will be
called a proper knotoid. Note that, in [29], the term knot-type is suggested for spherical
knotoids since there is a one-to-one correspondence between the set of knots in R3
and the set of spherical knotoids whose endpoints can be brought to the same region
determined by diagrams. For planar knotoids, this correspondence is no longer a one-
to-one correspondence, see [6,29]. With Definition 3 we extend the use of the term.

We assume an isotopy relation for Morse knotoid diagrams generated by the moves
shown in Fig. 3 that comprise cancellation/insertion of sequential local maxima and
minima on an arc called min-max moves, swinging of an arc with respect to a local
maximum or minimum called the slide moves, the vertical Reidemeister II type moves
and the Reidemeister III type braiding moves, plus planar isotopies that displaces the
endpoints vertically or horizontally, see Fig. 4. Note that horizontal Reidemeister II type
moves can be generated by the vertical Reidemeister II type move plus the slide moves.

Similar to knotoids in R?, it is forbidden to pull an endpoint of a Morse knotoid
diagram over or under a transversal strand, so as to avoid unknotting of a Morse knotoid
diagram. Furthermore, we do not allow planar rotations of endpoints, in analogy to
having the ends of a tangle fixed. As a result, the directions of the tangent vectors are
preserved. We call this restricted version of regular isotopy of planar knotoid diagrams
Morse isotopy of knotoids and the corresponding isotopy classes of Morse knotoid
diagrams Morse knotoids.

Any knotoid diagram in R? can be transformed into a Morse form via regular isotopy
that is generated by the second and third Reidemeister moves, vertical shifting and
rotation of the endpoints. We call a knotoid diagram in Morse form standard if the
tangent vectors at its endpoints are both directed upwards with respect to the bottom
to top vertical direction of the plane. The Morse knotoid diagram given in Fig. 1 is a
standard Morse knotoid diagram.

Proposition 1. Two knotoid diagrams are equivalent via regular isotopy if and only if
their standard Morse diagrams are equivalent in the Morse category via Morse isotopy.

Proof. The proof proceeds in the same fashion with the proof in [31]. O

Remark 1. Quantum invariants as we shall define them, are often not invariant under the
first Reidemeister move (just as the Kauffman bracket polynomial is not so invariant).
In doing a theory of quantum invariants, we exclude the first Reidemeister move and
work with regular isotopy with the restriction on the endpoints when we work with open
ended objects. To obtain invariants for knotoids, we can often normalize an invariant
of regular isotopy with a term induced by the first Reidemeister move as we do for the
bracket polynomial.
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Fig. 1. A Morse knotoid diagram

SavA
=X
R = XK

Fig. 2. Classical Reidemeister moves

A Morse knotoid diagram can be also endowed with an orientation from its leg to
its head. Oriented Morse isotopy on oriented Morse knotoid diagrams are generated by
the oriented versions of the Morse isotopy moves. In the sequel we will work with both
oriented and non-oriented Morse knotoids.

2.1.1. Virtual closure The theory of virtual knots was introduced by the second author
in [12-14,24]. A virtual knot diagram in R? is a knot diagram in R? with classical and
virtual crossings represented by circles placed around transversal intersection points of
the diagram. Virtual knot diagrams are considered up to the virtual isotopy relation that
is generated by the classical Reidemeister moves and the virtual Reidemeister moves
VRI,VRII,VRIII and the mixed virtual move, given in Fig. 5. A virtual knot is an
isotopy class of virtual knot diagrams up to the virtual isotopy.

The endpoints of a knotoid diagram can be connected with an arc by declaring each
intersection of the arc with the diagram as a virtual crossing. By doing so, we obtain a
virtual knot diagram (or a virtual link in the case of a multi-knotoid diagram). In fact,
we have a well-defined mapping, named as the virtual closure, from the set of multi-
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Fig. 3. The Morse isotopy moves

knotoids to the set of (oriented) virtual links [6,29]. The virtual closure can be naturally
applied for Morse multi-knotoid diagrams to obtain virtual link diagrams in the Morse
form.

Proposition 2. The virtual closure of a knotoid diagram in R? gives the same virtual
knot as the virtual closure of its Morse knotoid representation up to virtual isotopy.

Proof. The standard Morse knotoid representation of a knotoid K in R? is equivalent
to K via knotoid isotopy, and the virtual closure is a well-defined mapping on the set of
isotopy classes of multi-knotoids. Then the statement follows. O

It is often the case that an invariant of virtual knots and links can be reformulated for
knotoids in R? by examining the closure relationship. In this paper, quantum invariants
we construct for Morse knotoids and knotoids in R?, can be formulated as rotational
invariants of rotational virtual knots and links. In virtual knot theory, rotational equiv-
alence is the isotopy relation on virtual knot diagrams that is generated by the classical
and virtual Reidemeister moves except the first virtual move [21], and rotational virtual
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Fig. 5. The virtual Reidemeister moves
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Fig. 6. Whitney trick for an immersed curve
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Fig. 7. Signs of cups and caps

knots are considered up to this relation. In rotational virtual knot theory, a virtual curl
can not be directly simplified but two opposite virtual curls can be created or destroyed
by using the Whitney Trick, shown in Fig. 6 where self-intersections of the curve are
regarded as virtual crossings.

2.2. Rotation number for oriented Morse knotoid diagrams. Let K be an oriented Morse
knotoid diagram. The rotation number for K, rot(K) is a real number that is defined
as the half of the total number of counterclockwise oriented cups and caps minus the
total number of clockwise oriented cups and caps on K. In other words, cups and caps
of K are endowed with a sign induced by the orientation: The right-pointed maxima
and left-pointed minima are signed with —1, and left-pointed maxima and right-pointed
minima are signed with +1, as shown in Fig. 7. Then, the rotation number of K, rot (K)
is the half of the sum of the signs on the the maxima and minima of K.

Theorem 1. The rotation number is a Morse isotopy invariant.

Proof. The rotation number remains invariant under the Morse isotopy moves since they
do not add or delete any cups or caps, except the min-max moves, in which a sequential
minimum and maximum with opposite signs are added/deleted. It is clear that the total
contribution to the rotation number of these moves is zero. O

2.2.1. A rotational bracket polynomial for Morse knotoids A rotational extension of the
Kauffman bracket polynomial can be defined for Morse knotoids based on the rotation
number defined for open-ended state components. Let K be a Morse knotoid diagram.
Each crossing of K is smoothed in two ways as in the bracket case to obtain the collection
of bracket states. In each state, there exists exactly one open-ended component that is
a simple arc containing the two endpoints of K and a number of circular components.
We assume an orientation for the open-ended state components from the leg of K to
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Fig. 8. An oriented spiral diagram with rotation number _73

its head. The rotation number for an oriented open-ended state component is defined as
follows.

Definition 4. Let A be an oriented open-ended state component in a bracket state of K.
The rotation number of A, rot (1) is the half of the sum of the signs of cups and caps on
A

Definition 5 (Equivalent Definition). The rotation number of A is equal to the total turn
of the tangent vector along A.

Itis clear that the rotation number of an oriented open-ended state component remains
invariant under Morse isotopy moves.

Definition 6. A spiral Morse knotoid diagram with an integer rotation number n is
a Morse knotoid diagram with equal number of cups and caps, oriented in the same
direction. A spiral Morse knotoid diagram with a rotation number of n+1/2, where n is
an integer, is a Morse knotoid diagram with a number of cups and caps differing by one,
all oriented in the same direction.

Note that a spiral Morse knotoid diagram with integer rotation number has endpoints
that are directed in the same way, either up-up or down-down, and a spiral Morse knotoid
diagram with rotation number n+1/2 has its endpoints directed as up-down See Fig. 8.

Lemma 1. Tio oriented spiral Morse knotoid diagrams Sy, S» are Morse isotopic if and
only if they have the same tangent directions at their endpoints and the same rotation
number:

Proof. Assume first that Sy, S> are two Morse isotopic spiral Morse knotoid diagrams.
By definition, Morse isotopy moves preserve the tangent directions at the endpoints and
they preserve the rotation number. Therefore, we deduce that S and S have the same
rotation number.

Now, let S1, S2 be two oriented spiral Morse knotoid diagrams whose rotation num-
bers are the same, say n > 0. (For n = 0, the statement clearly follows). Since the two
spiral diagrams Si, S> have the same rotation number with the same tangency directions
at their endpoints, the number of cups and caps oriented in the same direction in Sy is
necessarily the same as the number of cups and caps in S. The spiral diagrams S; and
S> can be found in exactly two forms: they turn either inwards or outwards, starting
from the leg to the head. Planar isotopies involving the shifting of the strands and the
endpoints horizontally and vertically turns one spiral to the other one, by preserving
the rotation number. See Fig. 9 that illustrates such transformation. The assumption on
the endpoint directions is clearly a necessary condition for the Morse isotopy relation
between S and S>. O
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Fig. 9. Changing a spiral diagram that turns inward into a spiral diagram that turns outward

]
—_— —_—
shift the endpoints vertically min-max move

Fig. 10. The Whitney trick for open-ended state components

Definition 7. A spiral Morse knotoid diagram is an in-going spiral diagram if it turns
inwards from its leg to its head.

Theorem 2. Tivo open-ended oriented state components whose endpoints have the same
tangent directions are Morse isotopic if and only if their rotation numbers are equal.

Proof. The rotation number is invariant under the Morse isotopy restricted to the open-
ended state components with the assumed conventions on their endpoints.

Now let us show that if the rotation numbers of two open-ended state components with
the coinciding tangent directions at their endpoints are equal then the state components
are Morse isotopic. We do this by proving the following claim.

Claim: An open-ended oriented state component A is Morse isotopic to the in-going
spiral Morse knotoid diagram with the same rotation number and the same tangent
direction at the endpoints. Specifically, A has rotation number O if and only if A is Morse
isotopic to a vertical strand with the tangent vectors at its ends are both directed up.

Proof of the claim:

For proving this claim, we use two types of Morse isotopy moves: One type is the planar
isotopy move called the min-max move that cancels a pair of sequential maximum and
minimum with opposite signs. We illustrate the non-oriented version of the min-max
move in Fig. 3. The other type of planar isotopy moves that will be used is what we call
Whitney trick for simple arcs or the S-moves, that is a vertical shifting of the endpoints
followed by a max-min move. See Fig. 10.

Let X be an oriented open-ended state component with rotation number n 7 0.

As we travel along A starting from its leg, it is clear that the total number of cups and
caps along A is at least |2n| since the rotation number is n. We first eliminate each pair of
sequential maximum and minimum that have opposite signs by the min-max moves. We
may require to shift the strands and the endpoints vertically or horizontally to be able to
apply min-max moves without creating any crossings. After the elimination, new pairs of
sequential cups and caps with opposite signs might be created in the resulting diagram,
which will be eliminated by the min-max moves. Clearly, eliminating the canceling pairs
does not have any effect on the rotation number. Thus, the final diagram is an oriented
diagram free of any pairs of sequential cups and caps and it has rotation number n. Thus,
we transformed A into a spiral diagram. By Lemma 1, the statement follows.
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rot rot

AN L AQ+AT)

Fig. 11. Evaluation of the rotational bracket polynomial

If A has rotation number O then A has necessarily up-up directed endpoints, since
otherwise the rotation number would be a non-zero half integer. Let the up directed
endpoint be the leg of A. Since X has trivial rotation number, any cups and caps of A can
be brought to be paired by planar isotopy including vertical shiftings of the endpoints
so that they are canceled pairwise. By the vertical shifting moves, that pull one endpoint
up and one endpoint down, A can be transformed into a vertical strand (trivial strand).
This proves the claim.

By proving the claim, we can deduce the required statement. O

Remark 2. Theorem 2 can be viewed as a specialization of the Whitney-Graustein the-
orem [30] for immersed curves in Morse form with endpoint directions specified as we
have done. In the next section we formulate the Morse category for such diagrams. Two
such curves are regularly homotopic (in the Whitney-Graustein sense) exactly when one
can be obtained from the other by max-min cancellations, and flat versions of the Morse
isotopy equivalences. One then uses this equivalence relation to obtain a Morse category
proof of the fully generalized Whitney-Graustein Theorem. We omit the details of this
proof, since we only need the argument here for curves without crossings.

Definition 8. Let K be a Morse knotoid diagram. The rotational bracket polynomial of
K is defined as

(K)ror = ) < Klo > 8",
o

where o is a state, < K|o > is the product of the coefficients of the smoothings in o,
8 = —A% — A~? and m is the number of circular components in o, and X is the variable
assigned to the open-ended state component in o endowed with orientation and # is the
rotation number of the open-ended state component.

Theorem 3. The rotational bracket polynomial is an invariant of Morse knotoids.

Proof. The proof is based on the invariance of the usual bracket polynomial combined
with the invariance of the rotation number. |

In Fig. 11 we compute the rotational bracket polynomial of an example of a Morse
knotoid diagram. Explicit calculation shows (K)o = A(1 — A™H + A2 L

3. Categories for Morse Knotoids

3.1. An extended tangle category. We set a category where Morse knotoids appear as
morphisms, by extending the category of tangles in the Morse form. The objects of this
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Objects: [0], [1]1,[2],.--,[N],--.

Morphisms:
[1] [0] l[1] [0] l [1]
| I | ] I !
[1] [1] [0] [2] [0]
A d T
cap cup
/\ [2] [J)]

Vs [2]

[2] [2] \ !

// R \/\ IR /NN 3
[2] [2]

Fig. 12. The objects and morphisms of the category of Morse tangles

extended category of tangles in the Morse form, Tan are [0],[1],[2],...,[n], where n is
a natural number, and the morphisms of this category are generated by the following
elementary tangles: a single vertical strand, right and left-handed crossings, a cap, a cup,
and two vertical strands initiating or terminating with a dot, respectively. See Fig. 12.

For a tangle morphism [n] — [m], [n] and [m] denote the number of free ends of the
tangle lying on bottom and top lines, respectively. In particular, the vertical strand [/ is a
morphism from [1] to [1], the crossing morphisms denoted by R, R are morphisms from
[2] to [2], a cup tangle is a morphism U : [0] — [2] and the cap tangle is a morphism
N : [2] — [0]. A vertical strand initiating with a dot | is a morphism from [0] to [1], a
vertical strand terminating with a dot l is a morphism from [1] to [0]. In this sense the
endpoints of a Morse knotoid diagram are not free ends. They are morphisms beginning
or terminating in the vacuum [0].

The composition wopu; of two morphisms wg : [n] — [m] and uy : [m] — [k]
where m # 0, is formed by placing the tangle corresponding to > on top of the tangle
corresponding to w1 and joining the output free ends of w; with the corresponding
input free ends of u;. See Fig. 12. It is clear that the composition operation defined is
associative.

The composition of the morphisms l; [1] — [0] and T : [0] — [1] is a morphism
from [1] to [1] given by the disjoint union as shown in Fig. 12.

A tensor structure on Tan is given by stacking the elementary tangles side by side
from left to right. This gives the tensor product ®, defined as [n] ® [m] = [n+m], where
[1], [m] are objects of the category. Note here that [0] ® [n] = [#] = [1] ® [0]. The
crossing morphisms R, R extend to the braiding maps,

0; =I® 1@ R I®: [i +k] — [i +k]

G =191 R®I® " [i +k] - [i +k],
for any i, k > 1. This makes the category Tan a braided monoidal category with identity
[0], in the sense of Joyal and Street [10]. Finally, for Tan to be a topological category, we
assume the identities that are generated by the Morse isotopy moves on the composition
and tensor product of the morphisms of Tan.
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Fig. 13. A Morse knotoid diagram as composition of morphisms in Tan
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We call a morphism in Tan a Morse diagram. Classical and virtual knots, tangles in
the Morse form and Morse knotoid diagrams are examples of Morse diagrams. A Morse
knotoid diagram does not contain any free ends. For this reason any Morse knotoid
diagram K can be viewed in Tan as a morphism from [0] to [0] that is decomposed into
a finite number of tensor products of the elementary morphisms. Figure 13 illustrates an
example.

3.2. An abstract tensor category. In this section, we define an abstract tensor category.
The reader will see that this category is almost the same as the tangle category Tan
that we discuss above. The abstract tensor category is designed so that there can be a
direct functor from this category to matrix algebra, and so that it parallels the structure
of partition functions in physics. In this category each morphism is notated with dots at
its free ends, as illustrated in Fig. 14. These dots are mapped by a matrix algebra functor
to matrix indices. We give the details of the matrix representation in Sect. 4.1. Let us
now give a precise description for the abstract tensor category.

The objects of the abstract tensor category ATC, are generated by the objects k and
V, where V can be considered as a free module and k as the ground ring of V. The tensor
product of V with itself gives rise to distinct objects

VRV®..QV = V@ for every n > 1. The following identities hold on the
—_——
n
product of the objects.

i) (VeV) V=V (VeV),
i) k@V=V=V®k

The morphisms of this category are generated by the identity operator [ : V. — V,
the cup and cap operators, U : k — V@ V,N: V ® V — k, two braiding operators
R,R:V®V — V®YV, and the operators n : k — V,e:V — k.

The tensor product A ® B of two operators A : V& — V®" and B : V® — V&J
isdefined as A ® B : V@ _ y®m+] Then, a Morse knotoid diagram K can be seen
as a composition of the tensor products of operators, as exempflied in Fig. 14.
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TE® 1
V®k
h®n
VevVeV

fr®1

VeveVv
h®r

VeVeV

h@n®

VokeV
h®t

VeV
fu
k

Fig. 14. A Morse knotoid diagram as composition of morphisms in ATC

We assume the morphisms R, R to be characterized only by the identities motivated
by the type II and type III Morse isotopy moves.

RR = I®%> = RR,
TR RINUIRR)=(RRINUTRR)(R®I)
I®RRIDUI®R) =RIDIRR(RSI)

Furthermore, the following identities that are the categorical descriptions of vertical
and horizontal shiftings in the plane,

(I®" @B)AQRI®)= (AR I®)(I®" @ B)=A® B,
where A : V&1 — y®n B . y® _ y&®j and
AR B=AB=B®A,

where A 1 k — V®* B : V®" _ k are assumed for the tensor product of morphisms.
See Fig. 15 for illustrations of these identities, respectively.

It is clear that ATC is a braided monoidal category with braiding maps generated by
R, R. Furthermore, there is a functor from Tan to ATC sending [0] to the ground ring
k, [n]to V®", forany n > 0, and the cup morphism to U operator, the cap morphism to
N operator, the crossing morpisms to R, R, respectively and T to €, l to n.

4. Quantum Invariants of Morse Knotoids

In the previous section, we have discussed how Morse knotoids can be seen as morphisms
of a category. In this section we show explicitly how such morphisms become invariants
of knotoids by using an appropriate functor to module categories. In fact, we shall begin
this section with a specific description of a partition function for knotoids, where we
associate directly matrices to the cups, caps and crossings of a Morse knotoid diagram.
The partition function is then a generalized matrix product, as we detail below.
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B

Fig. 15. Vertical and horizontal shiftings

4.1. A matrix of partition functions of Morse knotoids. In this subsection we give a
method of assigning invariants to the knotoid diagrams in the Morse form that is anal-
ogous to partition functions in statistical mechanics. We show in Sect. 4.1.1 below how
this ’tensor network’ definition can be formulated in terms of a functor on the category.

LetZ = {1, 2, ..., n} denote an index set for some n € Z* and k denote a commutative
ring. We label each free end of the elementary morphisms in the Morse category Tan
with anindex i € 7. In this way, each elementary morphism will be assigned to a matrix.
In particular, a vertical strand whose input and output free ends are labeled with i and

Jj, respectively, is identified with the Kronecker delta 81.] . See Fig. 16. Thus, the n x n
identity matrix with the entries 8{ ,1, j € 1 is associated to a vertical strand.

In a similar manner, to a cup and a cap, square matrices [M i1, [M; i1 € Myxu(k)
with entries M, M; ; are associated, respectively. To a right-handed and left-handed

. . — =k .
crossing, square matrices R = [Rf/.l], R = [Rl-j] € My, <2, (k) are associated.

Remark 3. Note that in the tensor network formulation a vertical segment with top or
bottom endpoint labeled with 7, always behaves as a Kronecker delta with respect to any
other index on the line.

By labeling each input and output of the elementary tangles with indices from the
chosen index set, a Morse diagram can be assigned to the product of the matrix entries
corresponding to the elementary tangles and the Kronecker deltas corresponding to the
vertical vertical strands at each level, with labels over them.
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b ifig
—8i=4y if i

NN

Fig. 16. Elementary tangles as matrix elements

Definition 9. A partition function of a Morse diagram in the Morse category Tan is de-
fined as the matrix obtained by taking the sum of the products of the scalar matrix entries
including the Kronecker deltas, over the repeated indices on the internal configurations
(cups, caps, crossings or vertical strands).

Clearly, a partition function of a closed knotted diagram in the Morse form takes
values in the ground ring k. For instance, the value of a partition function of a circle is
a scalar given by >, ,ci1 MM,

If a Morse dlagram is a tangle or a knotoid diagram, each choice of indices on its
free ends or on its endpoints, respectively, yields a partition function. Then, we have a
matrix of partition functions for the tangle or knotoid diagram. We call this matrix the
partition function matrix of the Morse diagram. In particular, if K is a Morse knotoid
diagram, there are n choices for labeling each of its endpoints with indices from the set
7. For each choice of labelings at the endpoints, a partition function is assigned to K. We
denote the partition function of the Morse knotoid diagram K with its endpoints labeled
witha,b e Z,by Z Z , where a holds for the label at the endpoint of K with lower height
and b holds for the label at endpoint of K at the higher height. See Fig. 18. Then, the
partition function matrix of K is an n x n matrix that is given with entries ZZ € k, and
is denoted by Zg = [ij].

For example, the partition function of a vertical strand with fixed labels on its input
and output ends is given by the concatenation of two Kronecker deltas and the summation
over the internal index i, Y ;.7 8% (Sib = 80 Thus the partition function of a vertical strand
with fixed input output indices a, b is equivalent to the Kronecker delta. This expression
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Fig. 17. Reduction of labelling on a vertical strand

b

m
|
k
. . b o, kI —bm
1 ] —> Z, K)22R g Ry MM
a

Fig. 18. A reduced Morse knotoid diagram

can be further reduced by labeling the vertical strand with only one index at an interior
point. See Fig. 17. Assuming one label for each vertical strand results in a Morse diagram
with one label between any two critical points. Figure 18 illustrates the Morse knotoid
diagram given in Fig. 14 with the reduced number of labels on it. We call this labeled
Morse diagram the reduced diagram. Reducing the number of labels on a Morse diagram
in this way induces a Kronecker delta-free definition for the partition function for Morse
diagrams.

Definition 10. The reduced partition function of a Morse diagram is the sum of the prod-
ucts of the scalar matrix entries, over the repeated indices on the internal configurations
of the reduced Morse diagram.

Lemma 2. The partition function matrix and the reduced partition function matrix of a
Morse knotoid diagram are equal to one another.

Proof. By the discussion above, it is explicit that reducing the labels on the internal ver-
tical strands of a Morse knotoid diagram will not affect the partition function. Therefore,
the partition function matrix remains the same. O

We will be working with reduced labeled diagrams and reduced partition functions
as it is most efficient in writing.

In order for the partition function Zg to turn out to be a topological invariant for the
isotopy class of a Morse knotoid diagram K whose endpoints are labeled with a and b
from Z, we assume the identities on the cup, cap and crossing matrices given in Fig. 19
and their variations induced by variations of the Morse isotopy moves.

As we see from the figure, the invariance under the vertical type II Morse isotopy
move imposes that the matrix R is the inverse of the matrix R. The invariance under the
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di id
RibMic= RpcMai

ik _if de ij dk ef
Rab ch Rij = Rbc Rai R kj

Yang-Baxter Equation

Fig. 19. The identities for the matrices

given vertical type IIl Morse isotopy move and its mirror image impose the following
identities on the matrices R and R, respectively. These identities are known as the Yang—
Baxter equation.

ij pkf pde _ pij pdk pef
Rahch Rike - RbcRai Rkj ’
ij —=kf—de —ef

—ij —ij —dk
RaijcRik = bcRai Rkj'

We have the following theorem.

Theorem 4. Suppose that matrices R and R are inverses, and satisfy the Yang—Baxter
equation and the interrelation with M'/ and M;; given by the slide moves. Suppose that

[M;;] and [M i1 matrices are inverses. Let Z} be the n x n matrix whose entries are

the values of the partition functions of Morse knotoid diagrams K 5 whose endpoints are
labeled with a, b as a, b runs over Z. Then ZZ is a Morse knotoid invariant.

Partition functions of Morse knotoids can be given in the form of a state sum, like in
the case of the bracket polynomial of classical knots and links [16]. We will discuss this
in the subsequent sections.

Our partition functions are constructed in analogy with the partition functions in
statistical mechanics where they are defined on a graph corresponding to a physical
system as generalized matrix products, and the matrices assigned to the nodes of the
graph are called the vertex weights. See [9, 15]. Before giving examples of Morse knotoid
invariants that can be modeled as partition functions, we would like to highlight the
relation between the category of Morse knotoids Tan, the category of abstract tensors
ATC and the category of matrices MAT.
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4.1.1. An overview of the interrelations of the categories A linear operator can be as-
signed to each generating morphism (or elementary tangle) in Tan as follows. Let V be a
module of finite rank over a commutative ring k with basis {e¢; };c7 where 7 = {1, ..., n}.
Let {e;j}; jez = {ei ® ej}; jez denote the tensor basis for V @ V.

Eachindex in Z represents a basis element of V in a unique way with the identification
a <> ¢4. Then, a vertical strand can be assigned to the identity operator / : V — V
given by

I(e)) =) 8hea,

bel

where 67 is the Kronecker delta.
The operator associated with the cup tangle U : k — V ® V is given by

U =Y M%eq,

a,beT
and the operator associated with the cap tangle N : V ® V — k is given by
N(eap) = Map,

where M“? and M, are the matrix entries associated to the labeled cup and cap.

The right and the left-handed crossing operators R, R : V. V — V ® V are
determined with the R and R matrices:

R(eij) = Y Rileu.

k,lel

Rieij) =y Riley.

k,lel

Finally, a vertical strand initiating with an endpoint labeled with i is associated to
an operator 17; : k — V such that n; (1) = ¢;, and a vertical strand terminating with an
endpoint labeled with j is associated to an operator €; : V — K such that €;(ex) = 1 if
j =k, 0 otherwise.

For instance, a circle decomposes into a cup and a cap operator and takes value that
is equal to the value of its partition function as shown below.

NoUM) =N( Y M%ew) =Y MPN(ea)= Y MapM™.

a,bel a,bel a,bel
This observation generalizes to the following lemma.

Lemma 3. Let S and T be composible morphisms (that is, the number of output free
ends of T is equal to the number of input free ends of S) in the Morse category Tan. Let
[S]1, [T] be the matrices of the morphisms S, T that determine the corresponding linear
operators, respectively. Let the composition S o T be denoted by ST and Z(ST) denote
the partition function matrix of ST. Then we have,

Z(ST) = Z(S)Z(T) = [S][T] = Matrix of the morphism ST.
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Proof. By definition, the partition function matrix Z(S) of a morphism § : yek
V®m where k, m € Z¥, is the matrix of partition function evaluations Zi]ll.'."'ii’" (S) over
the labelings of the diagram of the morphism. That is, Z(S) = [Zij] 1.1"'!.{;’" (8)]. Clearly,
Z(S) = [S]. Similarly, Z(T) = [zjl”zj J5(T)] and so Z(T) = [T] for a morphism
T:V® - V& ezt

The partition function of the composition S7 is obtained by summing the products
of the matrix entries of Z(S) and the matrix entries of Z(7") over all index assignments
to the common indices of S and T'. This is just a description of the matrix product of the

matrix [S] and the matrix [T].
The composed morphism ST : V®* — V@ s given by the following.

a1 .ag ap...ak
ST(er.i) =SQ_ Tiiea a) = Z TS Car.ar)
agel
— al Ak Qi
Za] Lagel ’1 n S“' ag €itewim

wheree;, ;i =e;, ®..Qe; , foriy € L.

Thus, the matrix of the morphism ST is equal to the partition function matrix of
ST. |

Note 1. The reader can verify that the matrix of the composition of the morphisms
(R®I)(I ® R)(R ® I) in the Yang—Baxter equation is given by Zl jkel R” kaRde
that is equal to the partition function of the corresponding morphism with mput and
output labels a, b, c and d, e, f, respectively.

We have the following theorem for Morse knotoid diagrams.

Theorem 5. Let K be a Morse knotoid diagram. The matrix whose entries are the values
of the partition functions Zj, assigned to Kp, for all a, b € T, is equal to the matrix of
the linear morphisms associated to K.

Proof. By definition of a Morse knotoid diagram, K can be sliced horizontally so that
each horizontal strip contains at most one critical point. Therefore, K can be regarded as
a composition of a finite number of linear morphisms associated to elementary tangles
stacked with vertical strands forming K. Then, by Lemma 3 the statement follows. O

4.2. The bracket partition function. The bracket polynomial is aregularisotopy invariant
of knotoids in S? and R? [17,29]. In this section, we show that it can be defined as a
Morse isotopy invariant of Morse knotoids in the form of a partition function.

Let K be a Morse knotoid diagram and V be a free module of rank 2 over C[A, Al 1,
the ring of Laurent polynomials with complex coefficients. Let {e1, e2} be a basis for
V. We label the endpoints of K with a, b € {1, 2}. We will consider the cases where
the tangent directions at the endpoints differ. We denote the Morse knotoid diagram
K with labels a, b at its endpoints by K if the tangent vectors at the endpoints of
K are directed upwards, Ko, or K if the endpoints of K are directed upwards and
downwards or downwards and upwards , respectively, with respect to the bottom to top
vertical direction of the plane.

Let the cups and caps of K are both assigned to the matrix M, where

0 iA
M= [—iA‘l 0]
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That is, M/ = M; jforeachi, j € 7, and let the right-handed and left-handed crossings
are assigned to the matrices R, R, where

A O 0 0 Al 0 0 0
rR—|0 0 A7l 0 7|0 ATT—A3A 0
“loAatAa—AaBo0o|"T T ] 0 A 0 0
0 0 0 A 0 0 0A°!

Lemma 4. The entries of the crossing matrices R and R satisfy the following identities.

R = AS8L8] + A™' M My, 4.1)
Ry =A7"sis] + AMY My,. 4.2)

Proof. The identities can be verified directly by substituting the values of the Kronecker
deltas and entries of the M matrix for the corresponding crossing matrix entries. O

With this choice of the M and R matrices, we have two possible ways to construct
the bracket polynomial as a partition function. The first construction is of a more direct
nature, given as follows.

Definition 11. The bracket partition function < Ky > of a Morse knotoid diagram K
with fixed indices a and b at the endpoints of K is the sum of products of the entries M
and R matrices corresponding to the internal configurations of K’ labeled with indices
from Z, and the sum is taken over /.

See Fig. 20 for a computational example.

Note that the bracket partition functions < K, >, < K ab - of the Morse knotoid
diagrams K, and K“? with fixed labels a, b and up-down, down-up tangent directions
at the endpoints, respectively, are defined as above.

Proposition 3. The bracket partition function of a Morse knotoid diagram with fixed
labels on its endpoints is invariant under the Morse isotopy moves.

Proof. 1t is clear that the Morse isotopy moves do not change the labeling on the end-
points. We need to check whether the M and R matrices chosen for the bracket partition
function, satisfy the relations given in Theorem 4. The verification is straightforward
and left to the reader. o

Proposition 4. The bracket partition function of K} (and of Kap, K ) induces a 2 x 2
matrix [< K,f >, as the indices at the endpoints a, b run over {1,2}. The induced
matrix [< K} >] is a matrix invariant of Morse knotoids.

Proof. Since there are two indices to label each endpoint of K, four partition functions
are assigned to K with specific choices of indices at its endpoints. Let the i I entry
of the 2 x 2 matrix [< K} >] be the partition bracket function < K ; > assigned to
K;., fori, j € {1,2}. < K; > is a Morse isotopy invariant for every a, b € {1, 2}, by
Proposition 3. Then, the 2 x 2 matrix [< Kj >] is invariant under the Morse isotopy. O
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Fig. 20. The evaluation of < K 11 >

MM
i ;=M My

Fig. 21. The circle value

4.2.1. The bracket partition function via state sum As the reader will notice, the iden-
tities 4.1 and 4.2 in Lemma 4 are in accordance with the bracket state expansion at a
crossing given in [29]. This gives the idea of defining the bracket partition function as a
summation over the states obtained by this expansion. Each crossing of the Morse kno-
toid diagram K with fixed labels a, b at its endpoints, is smoothed in two possible ways
as in the usual bracket case. From each possible combination of smoothing, we obtain a
finite number of circular state components and exactly one open-ended state component
containing the two endpoints labeled with indices a and b. Since the partition function
value of a circle is Y_; jcqy o) MY Mij = (M'2)* + (My1)* = —A* — A™%, where M is
the matrix we have assumed above for the cups and caps, each circular state component
contributes to the bracket partition function with the usual bracket value, see Fig. 21.

Open-ended state components have fixed indices a, b at the endpoints and are formed
by anumber of cups and caps. Let A}, denote an open-ended state component. The tangent
directions at its endpoints are inherited from K and so are both directed upwards .

An open-ended state component A7 contributes to the bracket polynomial with the
partition function value < A7 > that is equal to the sum of all products of the entries of
the corresponding cup and cap matrices and the sum is taken over all possible labelings
of the internal configurations with indices from Z.

Definition 12. The bracket partition function of K is defined as:

< Kj >= Z <Klo > (-A>— A1 < g >,

o
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where o denotes a state, < K|o > denotes the product of crossing weights (that is,
the product of A’s and A~!’s in the expansion of crossings) of o, n is the number of
circular components and < A7 > is the partition function assigned to the open-ended
state component in .

< Kap > and < K% > are defined in the same way as above, only the notations for
the open-ended state components of the Morse knotoid diagrams K,;, and K differ.
An open-ended state component of a Morse knotoid diagram is denoted by A, if its
endpoints are directed upwards and downwards, and by A%? if its tangent directions at
the endpoints are downwards and upwards, with respect to the bottom to top vertical
direction of the plane.

Example 1. By using the state sum definition, the reader can easily compute the bracket
partition functions < K22 >, < 1(21 > < K 12 > of the Morse knotoid diagram given
in Fig. 20 with the corresponding labeling at its endpoints, and verify that the induced
partition function matrix [< K} >] is the following diagonal matrix.
—AZ+ A2 41 0
0 —A*—AT24 A0
Proposition 5. The bracket partition function matrix [< Aj, >] of an open-ended state

component A, where a,b € I, is one of the following matrices, where n denotes the
absolute value of the rotation number of A},

B (_AZ)n 0 B (_AfZ)n 0
Ml_[ 0 (—AZ)"] MZ_[ 0 (—AZ)”]

Proof. By Theorem 2, A} is Morse isotopic to the in-going spiral Morse knotoid diagram
whose endpoints are labeled with a and b either in counter-clockwise or clockwise
direction. Suppose that A7 turns inwards in the counter-clock wise direction. Since the
rotation number of A7 is n, one encounters n pairs of maxima and minima sequentially
while traversing A} . Then, the formula for the partition function < Aj > is given by the
formula below.

a _ ) aiy yrizi3 iop—2i2n—1 X . . .
< }‘b > = § {ix k=1 2,,,161M M M MblZn—lMZZN—ZIZn—B Mlzl]

a,bfixed

T T\i T\i2n—4 T\i2n—2
= Z{ik}k:lljfi.z'zQIEI(MM )laz MM )ii - (MM )izn-z (MM )b .
a,bfixe

It is easy to see

r,_ [-A% 0

Therefore the matrix determined by < A7 > is the following matrix.

(=A™ 0
0 (_A—Z)n .
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When 1} is Morse isotopic to the in-going spiral Morse knotoid diagram that turns in
the clockwise direction, it can be shown that < A} > is assigned to the following matrix

that is the n'" power of [MT M. The verification of this is left to the reader.
(=A7H" 0
0 (_AZ)n .

Corollary 1. The bracket partition function of a Morse knotoid diagram K with upwards
directed endpoints, and labels on its endpoints induces a 2 x 2 diagonal matrix with
entries < K}/ >.

O

Proof. The bracket partition function < K; > is given by < A7 > multiplied with a

polynomial coefficient in A and A~!. The statement follows from this fact and Propo-
sition 5. =

Proposition 6. The bracket partition function matrices of open-ended state components
Lap and 2%° that are determined by < Aqp > and < A** >, are one of the following
matrices,

_[ 0 (—a%)2 [ 0 (=A™
M“[(—A—Zﬂ 0 ] Mz_[(—AZ)'% 0 ]

where 7 is the absolute rotation number of Lqp and of 128 for some n > 0.

Proof. With the argument in the proof of Proposition 5, assume first A, is Morse isotopic
to the in-going spiral Morse knotoid diagram that turns in the counter clockwise direction.
We first observe that to have a connected component with the endpoints pointing up and
down, respectively, the total number of cups and caps forming A, is necessarily an odd
number.

The bracket partition function of Ay, is given as follows.

i In—2ip—
<hap > = Z{ik}k=l ,,,,, et MU M MG,y M,y e Miyig Maiy
a,bfixed
_ . Ti2iy TNin—1in-2 7. . - .
= Z{lk}kzl ,,,,, 2,171€I(M ) e (M) M, pMi, i,y - MiyigMai,
a,bfixed

This sum is the ab'™ entry of the matrix [[(M Tm )%M 7. Direct computation
shows that < A, > yields the matrix M:

_ 0 (=A%
Ml_[(—A—Z)’i 0 }

Suppose now 1., is Morse isotopic to the spiral Morse knotoid diagram that turns in the
clockwise direction. It is left to the reader to verify that the matrix M, that is assigned
to < Agp >, is the transpose of the matrix M. That is,

[ 0 (A
Mz_[(—A%’% 0 }

If the endpoints of the state component is directed down and up, respectively, it follows
from a similar argument above and [M,;] = [(M Tyab] where [M,;] and [(M?] are
matrices for the cap and the cup respectively, that < A%? > yields the transpose of the
matrix M| or M, depending on the turning of the spiral Morse knotoid diagram that A%?
is Morse isotopic. o
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Fig. 22. The coloring at smoothing sites

Corollary 2. The bracket partition function of a Morse knotoid diagram K with up-down
or down-up tangent directions at its endpoints induces a 2 x 2 non-diagonal matrix with
entries < Kqp > or < K% >, respectively.

Proof. Tt follows from the fact that < K, > and < K® >) are determined by < Agp >,
< A% > respectively, multiplied with a polynomial coefficient in A and A~! and by
Proposition 6. O

4.3. The Binary Bracket Polynomial. The binary bracket polynomial of virtual links was
defined by the second author [20] as a modification of the bracket polynomial. In this
section, we study the binary bracket polynomial for Morse multi-knotoids and construct
it via a solution to the Yang—Baxter equation.

Let K be a Morse multi- knotoid diagram. The binary bracket polynomial is based on
acoloring of the bracket state components with elements from the set {0, 1}. The coloring
rule is as follows. The colors appearing at a smoothing site, that is, on the two pieces of
strands of K obtained by smoothing a crossing, must be different. In Fig. 22, we illustrate
possible coloring configurations at the smoothing sites where different colors meet A
dark line at a smoothing site indicates that the two local components at the smoothing
site must colored differently. We call a bracket state of K whose components can be all
colored in this way a properly colored state. The binary bracket of K is evaluated as
the total contribution of all properly colored states of K. It can happen that there is no
such coloring possible for a state. Such states will have a zero evaluation for the binary
bracket polynomial.

The binary bracket polynomial of a Morse multi-knotoid diagram can be computed
recursively by the relations given in Fig. 23. It is clear that the trivial knot diagram has
two properly colored states, colored with 0 and 1. Thus, the trivial knot diagram gets
the value 2 with the binary bracket polynomial. Likewise, the trivial knotoid diagram
has two properly colored states, but we assume only one of the the colored states for the
trivial knotoid diagram. Let this state be the state colored with 0. With this assumption,
the trivial knotoid diagram is assigned to 1 with the binary bracket polynomial, see the
third relation. The second relation shows that each disjoint unknot component multiplies
the binary bracket polynomial of a Morse multi-knotoid diagram K by two. Notice that
if the unknot component is connected to K with a dark band then the binary bracket
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{\/\}=A*{ X} +A{}<}
{X} A{X}ml{ﬂ}
2 (kO =24} {>—O}={>}

3 {0r=2 {N\F=1

Fig. 23. The binary bracket relations

0
0 0
K 7 / /
{b} :Az{ } +AA'1{ [ Aa { b+ A’Z{ )

Fig. 24. Computing the binary bracket of a knotoid

polynomial of K remains the same. In the first relation, we see that the coefficient
contributions coming from smoothing sites of a crossing are the same with the usual
bracket polynomial case.

The closed summation formula for the binary bracket polynomial of a Morse multi-
knotoid diagram is as follows.

Definition 13. Let K be a Morse multi-knotoid diagram. The binary bracket polynomial
of K is defined as,

(K}(A) = > < KIS >,

SeProperly colored states

where < K|S > is the product of the contributions of the smoothing sites in a properly
colored state S.

Figure 24 shows the whole set of bracket states of the given Morse knotoid diagram
K . The first three bracket states of K do not contribute to the binary bracket polynomial
since they do not admit a proper coloring. As the figure suggests, different colors at the
smoothing sites of these states would yield an incompatible coloring on the open-ended
segment components. The last state admits only one coloring of its components such
that the open-ended state component is colored with 0 and the closed state component
with 1, and these components are connected with a band. By the second relation, the
contribution of this state is as the value of a single trivial knotoid diagram multiplied
with the smoothing site coefficient that is A~2. Therefore {K} = A2,

Proposition 7. The binary bracket polynomial is a Morse isotopy invariant.
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{\@}=A {>®} +A'1{>©}

=A{ b
Fig. 25. The change under a Reidemeister I move

Proof. The verification that the binary bracket polynomial remains invariant under the
Morse isotopy moves follows the same as in the case of virtual knots and links. The
reader is referred to [20] for details of the verification. O

Proposition 8. The binary bracket polynomial becomes invariant under the knotoid
isotopy when it is normalized with the term A~"X) where w(K) denotes the writhe of
a planar multi-knotoid diagram K.

Proof. As shown in Fig. 25, a Reidemeister I move multiplies the binary bracket polyno-
mial with A or A~! depending on the type of the curl the move adds. Then, the invariance
can be provided by multiplying the binary bracket polynomial with the term A=*®) o

Corollary 3. Since any planar knotoid admits a unique standard Morse diagram, the
normalized binary bracket polynomial is an invariant of knotoids in R2.

4.3.1. A closerlook Itisunderstood that the coloring condition restricts the collection of
bracket states of a knotoid diagram K to a small collection. By a closer look at smoothing
sites of K, we observe that the coloring condition implies an alternating coloring on K.
Let a strand that connects two vertices of the underlying flat diagram of K be named as
an edge. The coloring condition at a smoothing site implies that any two edges at the
corresponding vertex that are not adjacent with respect to a cyclic order receive different
colors. See Fig. 26 for an illustration. This requirement is satisfied when the edges of
the underlying flat diagram of K is colored with O or 1 in such a way that the colors
on the edges alternate as we travel around the diagram with the orientation from the
leg to the head of K. There exists exactly two such colorings for the flat diagram of K
depending on the labeling of the first edge that is adjacent to the tail of K either with O
or 1. Since each vertex except the endpoints is visited twice, any flat knotoid diagram
can be colored in this way. When we assume to color the initial edge incident to the leg
with 0, K has only one properly colored state, since there is exactly one way to smooth
each crossing of K equipped with such coloring (Fig. 26).

Proposition 9. If « is a Morse knotoid that admits a diagram whose endpoints lie in the
same local region of R2, then {k} = A¥®), where w(k) is the writhe of k.

Proof. Let K denote a Morse knotoid diagram of « satisfying the given condition on
the endpoints.

From the above discussion, we first note that K admits a unique binary coloring with
the assumption on its initial edge incident to its tail colored with 0, and as a result, there
is only one properly colored state of K.

Since K has its endpoints in the same planar region, any crossing of K has even parity,
so0 is an even crossing [6]. This means that there is an even number labels between the
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Fig. 26. State markers and the binary bracket state

Fig. 27. An even crossing

two labels representing a crossing of K in the Gauss code of K. This is equivalent to
say that there is an even number of intersections between any loop based at a crossing
of of K (consider the crossing as flat) and the rest of the diagram. (Note that we do not
count the intersection at the base point of the loop.)

Figure 27 illustrates an even crossing.

Assume now that K is given an orientation from its tail to its head. Let ¢ denote a
crossing of K and 2n, n € N be the number of intersections of the loop at (flat) ¢ with
the rest of the diagram. Each intersection permutes the colors appearing on the loop
at ¢ so that its initial and the last edge incident to the flat ¢ receive the same color as
follows. There are in total 2n + 2 edges on the loop, except from the initial edge going
inwards to the flat crossing c. Let A € {0, 1} be the color on the initial edge. Then the
k' edge is colored with A + k. Therefore, the last edge incident to the crossing that is
going outwards from the crossing, recieves the color A +2n +2 = A (mod 2).

To obtain the unique properly colored state of K all crossings of K are required to be
smoothed so that the initial and the last edges incident to crossings remain on the same
side of the smoothing sites. This corresponds to smoothing crossings of K agreeably
with the orientation on K which results in each crossing ¢ of K contributing to the binary
bracket polynomial with the value A%78”(), see Fig. 28. Therefore, the total contribution
from the oriented smoothing the crossings of K is A*¥X) where w(K) is the writhe of
K. The writhe is clearly a Morse isotopy invariant so w(K) = w(k). The statement
follows. O

By Proposition 9, we have the following corollary.
Corollary 4. The normalized binary bracket polynomial is trivial for knot-type knotoids.

In a knot-type knotoid diagram any crossing is even with respect to to the Gaussian
parity but in a proper knotoid diagram, there is at least one odd crossing (a crossing
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sign(c)=1 sign(c)=-

Fig. 28. Oriented smoothing of crossings

Fig. 29. An odd crossing

admitting odd parity with respect to the Gaussian parity) [6]. For a proper knotoid
diagram K, we can define odd writhe as the sum of the signs of the odd crossings in K.
The odd writhe is a knotoid invariant [6]. We can also define the odd writhe for Morse
knotoids directly.

Proposition 10. If « is a Morse knotoid with any of its representative diagrams having
its endpoints in different local regions determined by the diagram in R?, then {k} =
AT phere J (k) is the odd writhe of k and w(k) is the writhe of k.

Proof. Let K be a representative diagrams of «. By the former discussions we know
that K admits a unique properly colored state, and since it has its endpoints in different
planar regions, K has at least one odd crossing. That is, there is at least one crossing ¢
of K such that there is an odd number of labels between the two incidences of the label
representing ¢ in the Gauss code of K. This requires that the loop at ¢ encloses one of
the endpoints of K. See Fig. 29.

Assume K is oriented from its tail to its head. Let the loop formed by an (flat) odd
crossing has 2n + 1, n € N intersections with the rest of the diagram. Let 1 € {0, 1}
be the color of the initial edge incident to the flat crossing that goes inwards into the
crossing. Then the last edge incident to the crossing that goes outwards, is colored with
A+2n+3 = A+1 (mod 2). That s, the initial edge incident to the vertex of the crossing
receives a different color than the last edge.

The only way to smooth an odd crossing according to the coloring condition is to
smooth it so that the edges that lie on same one side of the crossing connect with the edges
that lie on the other side of the crossing. This corresponds to the A — rype smoothing
for a negative crossing, as depicted in Fig. 29. Thus, the contribution of smoothing of a
negative crossing is A that is A~57¢"()_If the odd crossing is a positive crossing, then
the smoothing would correspond to the B- type smoothing and the contribution to the
binary bracket polynomial would be A=5/87(¢) = A~1,

Let E(K) denote the total sum of the signs of even crossings of K. It is clear that

w(K) = J(K) + E(K),

where w(K) is the writhe of K.
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0
0=1

Fig. 30. A uncolorable and a colorable flat multi-knotoid diagram

From Proposition 9 and the observation above, it follows that the total contribution
made from smoothing all crossings of K in order to obtain the properly colored state
of K is equal to AT EHEK) qupstitute E(K) = w(K) — J(K), we find that the
contribution of the properly colored state is A2/ (K)+w(K) O

Corollary 5. The normalized binary bracket polynomial of a proper knotoid k is A=),

where J (k) is the odd writhe of k.

If K is a multi-knotoid diagram then K does not necessarily admit such binary
coloring and so may have no properly colored state at all. See the flat multi-knotoid
diagram given on the left hand side of Fig. 30 where a coloring on the knot component
results in a contradiction (0 = 1). We will examine uncolorable multi-knotoid diagrams
below in more detail. If K is colorable multi-knotoid diagram then each of its knot
components admits two colorings by swapping 0’s to 1°s or vice versa on its edges. This
implies that K has 2" properly colored states, where m is the number of knot components
of K. Itis not hard to see that a multi-knotoid diagram whose flat diagram is seen on the
right hand side of Fig. 30 has 2 properly colored state obtained by swapping the given
colors on the unknot component.

Proposition 11. Let K be a multi-knotoid diagram. If the number of crossings shared
by the knotoid component of K and one of the knot components is odd, then K cannot
be colored properly.

Proof. First observe that any two knot components of K share an even number of
crossings since any strand entering ‘inside’ a region enclosed by a knot diagram must
go out of the region, as a result of the Jordan curve theorem. Thus, an odd number of
crossing can be shared only between the knotoid component and a knot component of
K. Let u be a knot component of K sharing 2n + 1, n € N crossings with the knotoid
component of K. Let & € {0, 1} be the color on an edge of . Each crossing alternates
the color A by 1 as we traverse the component and so the edge that is colored initially
with A is required to receive the color A +2n+1 = A+ 1 (mod 2) when we are back to
the same edge. This results in a not well-defined coloring of the knot component because
one of the edges on it receives two different colors. We exemplify this in Fig. 30. O

In Fig. 31, we illustrate the two proper colorings of a multi-knotoid diagram whose
underlying flat diagram is given in Fig. 30. We also indicate the smoothing types to
obtain its properly colored states. The reader can verify easily that the binary bracket
polynomial of the multi-knotoid diagram is A3 + A™>. and its writhe is —5. Therefore,
the normalized binary bracket polynomial is A%+ 1, and this shows that the multi-knotoid
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Fig. 32. Non-triviality of another knotoid via the binary bracket

is not isotopic to the multi-knotoid diagram with two split trivial components with the
normalized binary bracket polynomial equal to 2.

In Fig. 32, we also illustrate the two proper colorings of a multi-knotoid diagram. The
reader can verify that the linking number of the multi-knotoid, that is the half of the total
sum of the signs of the shared crossings, equals 0. But we find that its normalized binary
bracket polynomial is A(A3 + A=) = A* + A~* which shows that the nontriviality of
this multi-knotoid.

4.3.2. A quantum model for the binary bracket polynomial A quantum model for the
binary bracket of virtual knots and links is given in [20]. This model can be applied as a
quantum model for the binary bracket polynomial for Morse knotoids and multi-knotoids
by assigning specific matrices to cups, caps and crossings of diagrams.

We assign the 2 x 2 identity matrix to cups and caps, and the following R, R™!
matrices to the right-handed and left-handed crossings of a knotoid diagram.

0 00A°! 00 0 A
| 0 A0 O 1 _loAat o o0
R=1"09 104 0 | R™=10 0 a0
A10oo0 0 A0 00

Notice that the R matrix given can be derived from the state expansion of the binary
bracket polynomial at the right-handed crossing, see Fig. 33 that illustrates the entries
R8 } and R??. The R matrix is unitary when A is on the unit circle in the complex plane
[4], and, in principle, can be used as a quantum gate for the design of a topological
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I={0,1}
1 0
0 1
0 1
o N A0 s)
01 N A = 299
0 1 0 1
0 0
PN 1 00
R . N =t _AtMM
11 \ 1 11
1 1
Fig. 33. The R-matrix entries
{ H =M00M00 + M“M” =2

Fig. 34. The loop evaluation

quantum computer. This indicates the possibility for applying quantum invariants of
knotoids in quantum computing, a possibility that we shall pursue in subsequent work.

With these matrix assignments, the binary bracket polynomial can be given as a
partition function where a single unknot component gets the value §oo + 3811 = 2 and the
trivial knotoid diagram gets the value 88 = 1 (See Fig. 34).

Remark 4. Since cups and caps are assigned to the identity matrix, this model for the
binary bracket polynomial remains invariant under the rotations of the arcs. Such model
where the cups and caps are assigned to the identity matrix and the crossings are assigned
to the R matrices given by the crossing expansions can be given also for the bracket
polynomial [16].

5. Oriented Quantum Invariants

5.1. General schema. In this section we present a general schema for oriented quantum
models for invariants of oriented Morse knotoids. For this, we introduce right and left
oriented cups and caps that are assigned to multiples of the Kronecker delta, as in Fig. 35,
where  is a constant and J,, is the Kronocker delta for some a, b in an index set. The
topological invariance under the min-max move demands that the matrices assigned to
a pair of right oriented or left oriented cup and cap to be inverses to each other.



1712 N. Giigiimcii, L. H. Kauffman

a b a/2
\/ g ab
a b

M

ab M_ab

a b
-a/2
> H 6ab
a b

- ab
Mab >

Fig. 35. Oriented cups and caps
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Fig. 36. Twist at a mixed negative crossing

o

Crossings may appear as endowed with two types of local orientations, mixed and
parallel type. In a paralel oriented crossing, the arcs at the crossing are oriented in the
same way directing both up or down with respect to the bottom to top direction of the
plane. In a mixed oriented crossing, the arrows on arcs of the crossing point to different
directions. A mixed oriented crossing can always be converted to a parallel oriented
crossing by regular isotopy as we show in Fig. 36.

We assign R, R matrices to positive and negative crossings, respectively, that are
both solutions of the Yang—Baxter equation so that oriented Morse isotopy type III
moves are satisfied. To satisfy the parallel type Morse isotopy type II move (that i 1s
the strands involved in the move are oriented in the same way), we assume R = R~
We also impose the following identity on cups, caps and R, R matrices induced by the
anti-parallel Reidemeister II moves.

i ; —I <
ﬁjbRZﬁ” MHYRY Mg = 8085, (5.1)

where in an entry R/ > @ b € T hold for the indices on the arcs going inward to the
corresponding crossing and ¢, d € 7 hold for the indices on the arcs emanating from
the crossing, following the orientation.

Furthermore, the conversion of a mixed negative crossing to a parallel crossing en-
forces the following identity involving the cups and caps matrices and the R matrix
assigned to negative crossing. Note that we have the variations of this identity involving
a positive crossing so the R matrix and we leave it to the reader to investigate these
identities.
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Fig. 37. Some of the irreducible bits avoiding the recursive computation

When we insert the values for cups and caps into this equation we find,

c—db =b —a —db
MIR w2 =2 R 12, (5.2)

SES

Definition 14. An R matrix solution of the Yang—Baxter equation is called spin-preserving
if R?Ilj’ is zero whenever a + b # ¢ +d.

We can deduce from the Eq. 5.2 that any R solution of the Yang—Baxter equation
matrix satisfying the conversion identity is spin-preserving. We also conclude that a
partition function obtained by the products of the matrices M and R satisfying the above
equations will give us an invariant of a Morse knotoid diagram with fixed indices on its
endpoints.

5.2. The Alexander Polynomial for knotoids via a quantum state sum model. In this
section we construct the Alexander-Conway polynomial for Morse multi-knotoids. We
do this by adapting the state sum model given in [16] that yields a solution of the
Yang—Baxter equation. The importance of having the Yang—Baxter state sum model
of the Alexander polynomial for Morse multi-knotoids lies in the fact that not every
ascending or decending multi-knotoid diagram is Morse isotopic to the trivial knotoid
diagram. This is equivalent to say that there exist multi-knotoid diagrams that admit
no unknotting sequence. See Fig. 37 for some basic examples. This fact obstructs the
Conway type skein identity (see the next section) to be applied in a recursive computation
of the Alexander polynomial since one encounters a multi- knotoid diagram that admits
no unknotting sequence in a step of the recursion.

5.2.1. A small review of the Alexander-Conway Polynomial Recall that the one-variable
Alexander polynomial Vg (z) = Vi of an oriented classical link K is the unique poly-
nomial determined by the following three properties [3]:

(1) Vg = Vg if K is ambient isotopic to K.

(2) Vg = 1if K is the unknot.

(3) Vi, —Vi_ =2V, where L., L_, Ly are links differing from each other at only
one crossing, as shown in Fig. 38.

The Conway skein identity (the third property given in the above list) causes that any
split knot/link has vanishing Alexander polynomial [16]. Precisely, any oriented split
link L can be represented abstractly as the diagram L given in Fig. 39. The links L+
and L_ related to L in the skein identity are clealry ambient isotopic. By the Property
1, and the skein identity we have that V;, =V, = 0.
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Fig. 38. The links in the skein relation of Alexander polynomial

=0
Fig. 39. The Alexander polynomial of split links vanishes

<

< Or=0-<()>

< O >
N

Fig. 40. The value of the trivial components

A state sum model given for the Alexander polynomial that is of the form ) <
Klo > &%, where § is the value for state components, satisfies the following split
property.

V(OK) =V Vg.

Then with the observation above, we deduce that any state sum model for the Alexander
polynomial vanishes for any oriented classical links. We can get over this obstruction
by utilizing (1, 1)-tangles for the construction of the Alexander polynomial for oriented
classical links [16]. In the state sum model of the Alexander polynomial for (1, 1)-
tangles, the value of the trivial (1, 1)-tangle is assumed to be 1 and the value of the
unknot is 0. See Fig. 40.
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Fig. 42. The state sum evaluation of an oriented unknot

= 1

The states of this model are obtained by expanding each crossing of an oriented
(1, 1)-tangle, as given in Fig. 41. The strands at the smoothing sites are labeled with
indices from the index set Z = {0, 1}.

This expansion utilizes the following R and R~! matrices for the positive and the
negative crossing, respectively.

g 0 0 0 g'o 0 0
_|0g—g7'1 0 4 _ |00 1 0
R=1o" 1 00 |* KB =loi141-4g0
0 0 0—g! 00 0 —g

It is verified in [16] that the R matrix (and its inverse R~!) is a spin-preserving
solution of the Yang—Baxter equation.

Now notice that an oriented unknot has two states with labels + and —, shown in
Fig. 42. Each state of the unknot is evaluated as i ! and i, respectively, that makes the
total sum equals 0. Accordingly, i"(@)/ab¢l(@) 5 assigned to a signed oriented circular
state component . Similarly, a trivial (1, 1)-tangle has two states with labels + and —
but its rotation number is counted to be 0. Therefore each of its states is assigned to %,
making the sum equal to 1.

It is then straightforward to see that the matrices assigned to an oriented cup and a
cap with a +, — label, are the following matrices. See Fig. 43 for an illustration.

Mah:[(w_ab:[\’ol\/;}’
< (]
Maszw_afz[\gl_ —_i]'

The closed state sum formula for the Alexander polynomial of an oriented (1, 1)-
tangle is given as follows.
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Fig. 44. The skein relation of the state model

Definition 15 [16]. Let K be an oriented tangle diagram representing an oriented (1, 1)-
tangle. The state sum polynomial of K, V(K) is defined as,

1
Vi = (g™ Y < Klo > Sallh,
(e

where rot (K) is the rotation number of K, that is the total sum of the half of the signs
of the oriented cups and caps forming K, < K|o > is the product of the coefficients
at the smoothing sites of the state o, and the norm of o, ||o|| is the sum of indices on
circular closed components of the state o, each multiplied by the rotation number of the
corresponding state component.

Proposition 12 [16]. The given state sum model satisfies the Conway skein indentity.

Figure 44 verifies that the state model satisfies the Conway skein identity of the
Alexander polynomial.

Proposition 13 [16]. The state sum polynomial becomes an ambient isotopy invari-
ant of a classical knot/link K when it is normalized with (ig=")™""®)_ The trace of
(ig=")7ro' IV is the Alexander polynomial of K .
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Fig. 45. An open-ended state component evaluation

5.2.2. The Alexander polynomial for Morse knotoids The R, R~ and the M matrices
assigned to oriented cups and caps of the quantum state model given in the former section,
can be utilized for defining the Alexander polynomial Morse knotoid diagrams. Let K}/
denote an oriented Morse knotoid diagram with its endpoints labeled witha, b € {—, +}.

Asinthe (1, 1)-tangle case, we obtain the states of an oriented Morse knotoid diagram
K}, by the crossing expansions of the model. Each state of K/ contains exactly one open-
ended component containing the endpoints of K and a number of circular components.
Each state component (open-ended or closed) is oriented and labeled with either + or —,
and is composed of a number of cups and caps. We will assume that each state component
contributes to the Alexander polynomial as a product of the corresponding values in the
oriented cups and caps matrices. See Fig. 45, and note that a single + or — means that
both ends have the same labels. As a result, the value of an open-ended state component
A is nontrivial only if the endpoints admit the same labeling; either + or —. Thus, the
value of an open-ended state component A is equal to j/@bel()ror()

Definition 16. The state sum V of a Morse knotoid K is defined as:
=Y <Ko = il
(e

whererot (K), < K|o > are defined similarly as above, and ||o || is defined to be the sum
of labels of loop components and the long segment component in the state o multiplied
by the rotation number assigned to the components.

Proposition 14. The matrix determined by the state sum V is a Morse isotopy invariant.

Proof. Showing that the state sum model is invariant under the oriented type II and type
IIT Morse isotopy moves goes similarly with showing that the polynomial is invariant
under the classical Reidemeister moves of classical knots and links. The reader is referred
to [16] for illustrations of invariance for the classical case. O

Let us examine the polynomial under the Reidemeister type I knotoid isotopy moves.
As shown in the following figure 46, the state sum polynomial changes by either ¢ i
or —qi according to the rotation of the curl created by the type I moves. Therefore the
state sum multiplied by the factor ig~"?'X) becomes invariant under all the oriented
knotoid isotopy moves. Since any knotoid in R? can be represented by its standard Morse
diagram, the normalized polynomial is an invariant of planar knotoids.

As done in Fig. 44, we can verify the normalization of this state sum polynomial
satisfies the Conway skein identity. Since any knotoid « in R? has a unique standard
Morse knotoid representation K, we can define the state sum polynomial for «, so that

Ve = Vg.
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Fig. 46. The change of V under an oriented type I move
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Fig. 47. The Alexander polynomial computation of a multi-knotoid

Corollary 6. Let K be a knotoid in R%. The normalization of V(K), Vg = (iq) """ KV
and its trace, tr (V) are both invariants of planar knotoids.

Definition 17. Let K be a knotoid in R?. The half of the trace of the matrix Vg =

ig~ ")V is the Alexander polynomial of K.

Example 2. The multi-knotoid diagram given in Fig. 47 admits no unknotting sequence.
This obstacles the computation of the Alexander polynomial by the skein relation. Nev-
ertheless, the quantum state sum model provides us a way to compute its Alexander
polynomial. We see from the figure that the knotoid component of K contributes to the
rotation number trivially and thus the total rotation number of K is —1 contributed by
the knot component of K. The first two states have rotation number 1, and the last two
states have rotation number —1.
The the state sum matrix is given as follows.

- [@-Di 0
VK—[ 0 (q_1+1)ii|'

By normalizing the matrix Vg and taking the half of its trace we find the Alexander
polynomial of K as %(iq(qi —g it yiTl 4y = %(—q2 —1).

Example 3. In Fig. 48, we see a knotoid K and its states. The states given on the top line
are the states of K whose open ended component is labeled +, + at its endpoints, and
the two states on the bottom line are the states of K whose open-ended components are
labeled with —, — at its endpoints. Since the rotation number of its components is —1,
the evaluation of the states on the top is given as g%~ ! and (¢ — ¢~ 1)i, respectively
and the evaluation of the states on the bottom is given as —g 2i and (¢! — ¢)i~!,
respectively. The state sum matrix is given as follows.

Gy — [(—q2 +(g—q~ )i 0 }
0 (—q 7+ —q ")i]
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Fig. 48. A knotoid diagram and its states

(l-st)aQ sa ta+(18<1
b a

Fig. 49. The Alexander biquandle relations at crossings

The rotation number of K is —1. Then, by normalizing Vi by ig, we find the Alexander
polynomial of K is %(q3 +q 1 —2¢%+2).

Notice that we can also apply the Conway skein identity to compute the Alexander
polynomial of K since we now know the Alexander polynomial of the multi-knotoid
given in Example 2.

5.3. A generalization of the Alexander polynomial. A generalization of the Alexander
polynomial, namely the Sawollek polynomial was defined for virtual knots and links
[22,28] as the determinant of the 2 x 2 matrix representing the crossing relations of a
given Alexander biquandle coloring of a virtual knot/link diagram.

A biquandle X is a set endowed with four binary operations satisfying a number of
axioms that are motivated by the Reidemeister moves when the elements of X is consid-
ered to be associated to the edges of a knot or link diagram (or a knotoid/multi-knotoid
diagram). Satisfying the oriented Reidemeister III moves, a biquandle can be considered
as a solution to the Yang—Baxter equation. In Fig. 49, we present the four operations of
a specific biquandle called the Alexander biquandle, defined at a positive and a negative
crossing, respectively. The reader is referred to [7,8] for more on biquandles and the
induced invariants of classical, virtual knots and knotoids.

We now adapt the quantum state sum model given in [22] to construct the Sawollek
polynomial for Morse knotoids. This model is based on the generalized Burau matrix B
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that represents the Alexander biquandle operation rule at a positive crossing. Precisely,
we consider a positive crossing operation as a linear transformation 7 : V. — V on a
two dimensional module V with basis {ey, ex} defined by T'(e1) = (1 — st)ey + tea,
T (e2) = sejq. Thus the matrix B is given as follows.

1—sts
]

It is clear that the inverse of B is induced by the negative crossing operations and is
given as follows.
_ 0 !
B! = :
[sl 1-— sltli|

We extend the linear transformation 7 to the exterior algebra of V, A*V with basis
{1, e1, e, e1 A ea}. The extension T* : A*V — A*V is determined by the rules,

T*(1) =1,
T*(e1) = (1 — st)e; +tea,
T*(e2) = sey,

T*(e1 A ey) = Det(B)ey A ey = —ste] A ea.

Thus the linear transformation 7* and its inverse (7*) ! are represented by the following
matrices. The matrices R, R~! are solutions of the Yang—Baxter equation [22].

1 0 00 10 0 0
_|01=sts O 1_ |00 ¢! 0
R=1o + 00| K =losti—s11 o
0 0 0-—st 00 0 —s~ 1]

The matrices R and R~! induce a state sum model for the generalized Alexander
polynomial of oriented Morse knotoids in such a way that the entries of the matrix R
contribute to the state expansion at a positive crossing as local vertex weights, and the
entries of the matrix R~! contribute to the state expansion at a negative crossing as local
vertex weights, as shown in Fig. 50. It is convenient to do the following changes of
variables,

s <—>02, t<—>172,

R < aier, R ! arflRfl,

1 1

<0 T—0T .

Thus we obtain the matrices:

ol 0 0 0 ot~} 0 0 0

. 0 z ot ! 0 -1 0 0 ot O

R=1"109 o121 0 0 el B R
0 0 0 —ot! 0 0 0 —o 1t

The expansion is applied at each crossing of an oriented Morse knotoid diagram. This
results in collection of the states, each containing a number of circular components and
an open-ended segment component, each with an orientation and a + or — label on them.
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Fig. 50. Crossing expansions for the generalized Alexander polynomial

Plus or minus labeled cups and caps of the state components of a Morse knotoid
diagram are evaluated the same with the labeled cups and caps of the Alexander poly-

nomial state model, shown in Fig. 45. That is, each state component s is evaluated as
l-rot(s)label(s)_

Definition 18. We define the state sum polynomial of a Morse knotoid diagram K cor-
responding to this state expansion as follows:

1
Z(K)(o, 1) = 5 E < Kls > illsIl,
N

where the summation runs over all states obtained by smoothing the crossings of K
and labeling the components with + and —, < K|s > is the product of the local vertex
weights in state s, and ||s|| is the sum of the product of labels of the state components
with their rotation number.

Note that Z(K) here denotes the state sum polynomials Z(K) and Z(K_), where
K}, K~ denote the Morse knotoid diagram K with endpoints labeled +, + and —, —,
respectively. Thus Z(K) yields a 2 x 2 diagonal matrix with entries these polynomials.

Itis not hard to check the invariance of Z(K') under the Morse isotopy type Il and type
III moves, see [20] where the verification is done for virtual knots and links. Therefore,
the matrix determined by Z(K) is a Morse isotopy invariant.

Proposition 15. The polynomial Z(K) is a 2-variable generalization of the Alexander
polynomial of Morse knotoids.

Proof. Substituting s = 1 in the R matrix of the state sum Z(K) gives the R matrix of
the Alexander polynomial up to a change of basis. See [16] for details. O

In Fig. 51, we show that Z(K) is not invariant under a type I Morse isotopy move
that adds a negative curl to a vertical strand. In fact, by considering the other variations
of type I moves, the reader can verify that the state sum polynomial Z(K) changes by
(io~17)77'K) under a type I Morse isotopy move. Then, Z(K) can be normalized by
the factor (iot 1) " (K) and determines a 2 x 2 matrix invariant for knotoids in R2.
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Fig. 51. The change under type I Morse isotopy move

Definition 19. The trace of the matrix given by W(K) = (ioct~1)"®) Z(K) is called
the Sawollek polynomial of Morse knotoids in R2.

Proposition 16. The Sawollek polynomial is an invariant of knotoids in R>.

Proof. Every knotoid in R? has a unique standard Morse isotopy representation. By the
invariance discussion above, the trace of the matrix given by W (K) is invariant under
the knotoid isotopy moves. Then the statement follows. O

Lemma 5. Let K be a Morse knotoid diagram in R? that is of knot-type (the endpoints
lie in the same planar region of the diagram). Then, the trace of the matrix determined
by the partition function Z(K) is equal to i times the value of the quantum state sum on
the virtual closure of K.

Proof. 1t is clear that the virtual closure connects the endpoints of K by creating a
cup and a cap, oriented in the same direction. Thus, the contributions of the added cup
and cap to the partition function of the virtual closure knot v(K) are the same and
either as +/i or as ~/—i. The partition function of T(K) is then given as Z(v(K)) =
Yaveny VEZKHOVE =i(Z{ + Z3) = itr((Z(K)]. O

Theorem 6. Let K be a Morse knotoid diagram in R? that is of knot-type. Then, the
Sawollek polynomial of the virtual closure of K is equal to —ot~'tr (W (K)).

Proof. This follows directly by Lemma 5. O
Theorem 7. The Sawollek polynomial of a knot-type knotoid is trivial.

Proof. The virtual closure of a knot-type knotoid is a classical knot [6]. The Sawollek
polynomial vanishes on classical knots as discussed in [22]. Then by Theorem 6, it
vanishes on knot type knotoids. O
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Fig. 52. The crossing expansions
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Corollary 7. If the Sawollek polynomial of a knotoid in R? is not trivial then the knotoid
is a proper knotoid.

Note 2. In [22], it is shown that the state sum polynomial Z (K ) on a closed virtual knot is
equal to the Sawollek polynomial of the virtual knot originally defined via the generalized
Burau representation. For the Alexander and Sawollek polynomials of virtual knots, the
state sum uses a nontrivial matrix at virtual crossings. The relationship of our quantum
knotoid versions and the virtual closures needs further investigation.

5.4. An infinity of specializations of the Homflypt polynomial. A quantum state sum
model that yields an infinite number of specializations of the Homflypt polynomial of
classical knots and links is discussed in In [9,16]. We adapt this model to the knotoid
case to obtain specializations of the Homflypt polynomial.

In this state sum model, states of a given knotoid diagram are obtained by replacing
locally each tangle containing a crossing by a combination of decorated diagrams as
given in Fig. 52.

The <, >, = and # signs on the tangles refer to a labeling of the edges at a crossing
by an index set Z C Z. Precisely, < appearing at an oriented smoothing site of a positive
crossing indicates that the label of the strand on the left hand side of the sign is less than
the label of strand on the right hand side of the sign, = indicates that the index labelings
of strands on the left and on the right of the sign are equal, and # indicates that labels
of the crossed strands are not equal.

We pick an index set in the form I, = {—n, —n +2, —n + 4, ..., n — 2, n} for any
positive integer n to label the strands of a Morse knotoid diagram K. We consider a state
as an admissable state if it admits a well-defined labeling from /,,, according to the signs
between its components that are put in place of crossings. State components that are
either a union of circular components and an open-ended component or an open-ended
component may intersect with each other but none of the components can intersect itself
as the labeling would not be well-defined in that case. See Fig. 53.

The rotation number roz(s) for a state component s is defined in the same way as
defined in Sect. 2.2. Each circular state component or open-ended state component s
contribute to the polynomial with g0 (s)label(s)

Definition 20. The state sum polynomial of a knotoid diagram K; with fixed indices
at its endpoints, denoted by < Kg >, is defined as the sum of the evaluations of all
admissable state components as follows.
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RO

Fig. 53. A knotoid diagram and its admissable states
< Kj >= Z < Kflo > ¢l°ll,
o

where < Kj'|o > is the multiplication of the coefficients at the smoothing sites of the

admissable state o, ||o|| = ), rot(s).label(s).

The state sum polynomial of K,f determines a 2n x 2n matrix, for each a, b € I,.
This matrix is diagonal since the non-diagonal entries are given by the labeling of K with
two different indices from I, at its endpoints. This causes a not well-defined labeling on
the open-ended state components and so vanishing polynomials as there would be no
admissable states.

Example 4. We study the knotoid diagram given in Fig. 53. Assuming both endpoints

are labeled with a, where a € I,,, and summing up the contributions of all states of K
we find

<K!>=q’q"+@q—qg"HOQ_ a7+ ¢

a>b b>a

Proposition 17. The state sum model satisfies the regular isotopy version of the Homflypt
skein relation:

Proof. Side by side subtraction of the crossing expansions results in:

Notice that the right hand side of the equality above is:
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Then the skein identity follows. O

This state sum polynomial of a Morse knotoid diagram with a fixed labeling at its
endpoints can be viewed as a quantum state sum by rewriting the positive crossing
expansion as

R=(q—q i > j16'8] +qli = j18,8] +1i # 1]},

o 1 i<y,

where [i < j1={ othe]rwise
. 1 i = j7
li=jl= {0 otherwise

i il=ty ‘77

otherwise’
The matrices corresponding to cups and caps are determined by the following as-

signments.
a b a2
\__/ a aab
a b
Mab e
a b 12
-a
/4\ \/ a0
a b
- ab
IVlab M
where
1 a=-b,
8ab = { .
0 otherwise.

Lemma 6. The matrices induced by the positive crossing and the negative crossing
expansions given in Fig. 52 are solutions of the Yang—Baxter equation.

Proof. See [16]. O

Proposition 18. The state sum polynomial <> of a Morse knotoid diagram with fixed
labels at its endpoints is invariant under the second and third oriented Morse knotoid
isotopy moves.

Proof. See [16] for the case of virtual knots and links. The proof can be applied directly
to the case of Morse knotoid diagrams. O
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— ntl

<Q>='ﬂ'l< >
. q TN

Fig. 54. <> is not invariant under type I isotopy moves

The state sum polynomial <> changes under type I Reidemeister moves moves, as
shown in Fig. 54. The verification of this and the remaining variants of the move is left
to the reader.

Theorem 8. Let « be a knotoid in R* and K be its standard Morse representation. The
normalization of <> with the term (¢"+") ="K yields a matrix invariant of k.

Proof. Tt is clear that the term (¢"+")~*(X) makes <> invariant under the knotoid
isotopy moves. Thus, for all i, j € I, for some index set I,;, < K l.] > is an invariant of
k. Let M be a matrix whose i j entry is < Kl] >, fori, j € I,. Then it follows that M is
an invariant of . O

Definition 21. Let n be any natural number and /,, denote the index set for some n € N.
We define a polynomial P¢ of a Morse knotoid diagram K with fixed indices at its
endpoints, and an orientation on it as follows.

(qn+l)—w(K) <K >

<0 >,

Pg(q) =

where w(K) denoted the writhe of K, and < O > is the value of the unknot that is given
by Y uernd =24 7, 4“- The equality holds since the summation is taken over the
index set [, that contains elements symmetric with respect to the origin.

With the discussion above, it is not hard to see that P (q) satisfies the following
conditions

(1) P is invariant under the knotoid isotopy moves.

(2) Pplg) =1

3) q”“P,’A — g1 Py =(q— q_l)PI’éO, where K, K_, K refer to multi-knotoid
diagrams obtained by K by replacing a crossing of K by tangle shown in Fig. 38.

Therefore, given a natural number 72, Py (¢) is a one-variable analog of the Homflypt
polynomial of classical knots now defined for Morse multi-knotoids. For knotoids in
R2, the P ¢ (q) is related to the corresponding rotational invariant of the virtual knot that
is the virtual closure of K by taking the trace of the matrix induced by Pg for all index
labelings at the endpoints of K over the index set /,,. Let K denote the standard Morse
knotoid diagram of a knotoid « in R?, with fixed labels at its endpoints. The collection of

one-variable invariants { P¢ (¢) | n € Z.}, yields a unique function in a discrete variable

n and a polynomial variable g, Pg (I,, m), wherel, = ¢"*! forn € Z,andm = g~ ' —¢.
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It

is straightforward to verify Pk (/,,, m) satisfies the Homflypt polynomial relations for

every n € N.

It remains a question in this category whether there is an invariant two-variable

polynomial Pk (/, g) that specializes to all of the Px (I, q), as in the classical case.
Answering this question turns on understanding better the specific state sum evaluations

th

6.

at support our invariants. Our invariants are not computed just from the skein relations.

Further Problems

e Sawollek polynomial via state sum:

(1) The Sawollek polynomial can detect invertibility of some virtual knots [28]. How
does the Sawollek polynomial behave in that regard for knotoids in R??

(2) The Sawollek polynomial for virtual knots is divisible by G = 1 — st. The one
variable polynomial obtained by the dividing the Sawollek polynomial by G and
setting s = % results in the affine index polynomial of virtual knots [18,25]. The

affine index polynomial is also defined for knotoids in R? [6]. How do analogs of
this theorem work for knotoids, using the state summation models of this paper?

e Categorification of invariants: Is there a way to categorify the Alexander polynomial

and Sawollek polynomials for knotoids in R? based on the state sums given in this
paper. We are in the process of writing a paper on categorication of the bracket
polynomial of knotoids, see [5] for the case of virtual knots.

e Quantum invariants and 3-manifold invariants:

(1) Quantum invariants of classical knots and links can be used to produce invariants
of three manifolds [16,26,27]. Quantum invariants of knotoids in R2 can be used
to create knotoid invariants that respect the Kirby calculus. Do these invariants
give information about three-manifolds?

(2) We intend a sequel to the present paper on Reshsetikhin-Turaev type quantum
group and Hopf algebra invariants

e Vassiliev invariants can be extracted from many quantum invariants of classical

knots and links by a t = ¢* substitution. By such substitution, we obtain a power
series expansion of the quantum invariant in powers of x giving Vassiliev invariants
of finite type. See [19] for a more detailed discussion on this. We will investigate
derivation of Vassiliev invariants of knotoids [23] from the quantum invariants of
knotoids presented in this paper.
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