Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/11477
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Öz, Işıl | - |
dc.contributor.author | Arslan, Sanem | - |
dc.date.accessioned | 2021-11-06T09:49:35Z | - |
dc.date.available | 2021-11-06T09:49:35Z | - |
dc.date.issued | 2021 | - |
dc.identifier.issn | 0885-7458 | - |
dc.identifier.issn | 1573-7640 | - |
dc.identifier.uri | https://doi.org/10.1007/s10766-021-00707-0 | - |
dc.identifier.uri | https://hdl.handle.net/11147/11477 | - |
dc.description.abstract | With the widespread use of the multicore systems having smaller transistor sizes, soft errors become an important issue for parallel program execution. Fault injection is a prevalent method to quantify the soft error rates of the applications. However, it is very time consuming to perform detailed fault injection experiments. Therefore, prediction-based techniques have been proposed to evaluate the soft error vulnerability in a faster way. In this work, we present a soft error vulnerability prediction approach for parallel applications using machine learning algorithms. We define a set of features including thread communication, data sharing, parallel programming, and performance characteristics; and train our models based on three ML algorithms. This study uses the parallel programming features, as well as the combination of all features for the first time in vulnerability prediction of parallel programs. We propose two models for the soft error vulnerability prediction: (1) A regression model with rigorous feature selection analysis that estimates correct execution rates, (2) A novel classification model that predicts the vulnerability level of the target programs. We get maximum prediction accuracy rate of 73.2% for the regression-based model, and achieve 89% F-score for our classification model. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | International Journal of Parallel Programming | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Soft error analysis | en_US |
dc.subject | Fault injection | en_US |
dc.subject | Parallel programming | en_US |
dc.subject | Machine learning | en_US |
dc.title | Predicting the soft error vulnerability of parallel applications using machine learning | en_US |
dc.type | Article | en_US |
dc.authorid | 0000-0002-8310-1143 | - |
dc.institutionauthor | Öz, Işıl | - |
dc.department | İzmir Institute of Technology. Computer Engineering | en_US |
dc.identifier.volume | 49 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.startpage | 410 | en_US |
dc.identifier.endpage | 439 | en_US |
dc.identifier.wos | WOS:000633744600001 | en_US |
dc.identifier.scopus | 2-s2.0-85103371927 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1007/s10766-021-00707-0 | - |
dc.identifier.wosquality | Q3 | - |
dc.identifier.scopusquality | Q2 | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
crisitem.author.dept | 03.04. Department of Computer Engineering | - |
Appears in Collections: | Computer Engineering / Bilgisayar Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
Öz-Arslan2021_Article.pdf | 738.82 kB | Adobe PDF | View/Open |
CORE Recommender
SCOPUSTM
Citations
3
checked on Nov 15, 2024
WEB OF SCIENCETM
Citations
3
checked on Oct 26, 2024
Page view(s)
570
checked on Nov 18, 2024
Download(s)
46
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.