Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/11446
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOlcay, B. Orkan-
dc.contributor.authorÖzgören, Murat-
dc.contributor.authorKaraçalı, Bilge-
dc.date.accessioned2021-11-06T09:49:32Z-
dc.date.available2021-11-06T09:49:32Z-
dc.date.issued2021-
dc.identifier.issn0893-6080-
dc.identifier.issn1879-2782-
dc.identifier.urihttps://doi.org/10.1016/j.neunet.2021.06.022-
dc.identifier.urihttps://hdl.handle.net/11147/11446-
dc.description.abstractAccurate characterization of brain activity during a cognitive task is challenging due to the dynamically changing and the complex nature of the brain. The majority of the proposed approaches assume stationarity in brain activity and disregard the systematic timing organization among brain regions during cognitive tasks. In this study, we propose a novel cognitive activity recognition method that captures the activity-specific timing parameters from training data that elicits maximal average short-lived pairwise synchronization between electroencephalography signals. We evaluated the characterization power of the activity-specific timing parameter triplets in a motor imagery activity recognition framework. The activity-specific timing parameter triplets consist of latency of the maximally synchronized signal segments from activity onset Delta t, the time lag between maximally synchronized signal segments t, and the duration of the maximally synchronized signal segments w. We used cosine-based similarity, wavelet bi-coherence, phase-locking value, phase coherence value, linearized mutual information, and cross-correntropy to calculate the channel synchronizations at the specific timing parameters. Recognition performances as well as statistical analyses on both BCI Competition-III dataset IVa and PhysioNet Motor Movement/Imagery dataset, indicate that the interchannel short-lived synchronization calculated using activity-specific timing parameter triplets elicit significantly distinct synchronization profiles for different motor imagery tasks and can thus reliably be used for cognitive task recognition purposes. (C) 2021 Elsevier Ltd. All rights reserved.en_US
dc.description.sponsorshipThis study was supported by a grant awarded to Dr. Bilge Karacal by The Scientific and Technological Research Council of Turkey (TUBITAK) with grant number 117E784.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofNeural Networksen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectEEGen_US
dc.subjectShort-lived synchronizationen_US
dc.subjectMotor imagery activity characterizationen_US
dc.subjectSystematic timing organizationen_US
dc.subjectSynchronization measuresen_US
dc.titleOn the characterization of cognitive tasks using activity-specific short-lived synchronization between electroencephalography channelsen_US
dc.typeArticleen_US
dc.authorid0000-0002-7765-6329-
dc.institutionauthorKaraçalı, Bilge-
dc.departmentİzmir Institute of Technology. Electrical and Electronics Engineeringen_US
dc.identifier.volume143en_US
dc.identifier.startpage452en_US
dc.identifier.endpage474en_US
dc.identifier.wosWOS:000703533900021en_US
dc.identifier.scopus2-s2.0-85110441016en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.neunet.2021.06.022-
dc.identifier.pmid34273721en_US
local.message.claim2023-01-27T11:49:41.977+0300*
local.message.claim|rp02429*
local.message.claim|submit_approve*
local.message.claim|dc_contributor_author*
local.message.claim|None*
dc.authorwosidOzgoren, Murat/AAI-2149-2021-
dc.identifier.wosqualityQ1-
dc.identifier.scopusqualityQ1-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept01.01. Units Affiliated to the Rectorate-
crisitem.author.dept03.05. Department of Electrical and Electronics Engineering-
Appears in Collections:Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1-s2.0-S0893608021002549-main.pdf5.51 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

9
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

6
checked on Nov 9, 2024

Page view(s)

554
checked on Nov 18, 2024

Download(s)

728
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.