Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/11394
Full metadata record
DC FieldValueLanguage
dc.contributor.authorIvanyshyn Yaman, Olha-
dc.contributor.authorÖzdemir, Gazi-
dc.date.accessioned2021-11-06T09:48:28Z-
dc.date.available2021-11-06T09:48:28Z-
dc.date.issued2021-
dc.identifier.issn0378-4754-
dc.identifier.issn1872-7166-
dc.identifier.urihttps://doi.org/10.1016/j.matcom.2021.05.013-
dc.identifier.urihttps://hdl.handle.net/11147/11394-
dc.description.abstractWe propose numerical schemes for solving the boundary value problem for the modified Helmholtz equation and generalized impedance boundary condition. The approaches are based on the reduction of the problem to the boundary integral equation with a hyper-singular kernel. In the first scheme the hyper-singular integral operator is treated by splitting off the singularity technique whereas in the second scheme the idea of numerical differentiation is employed. The solvability of the boundary integral equation and convergence of the first method are established. Exponential convergence for analytic data is exhibited by numerical examples. (C) 2021 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.Y. All rights reserved.en_US
dc.description.sponsorshipThe research was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) through Project No:116F299.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofMathematics and Computers in Simulationen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGeneralized impedance boundary conditionen_US
dc.subjectModified Helmholtz equationen_US
dc.subjectBoundary integral equationsen_US
dc.subjectHyper-singular kernelsen_US
dc.titleNumerical solution of a generalized boundary value problem for the modified Helmholtz equation in two dimensionsen_US
dc.typeArticleen_US
dc.institutionauthorIvanyshyn Yaman, Olha-
dc.institutionauthorÖzdemir, Gazi-
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.volume190en_US
dc.identifier.startpage181en_US
dc.identifier.endpage191en_US
dc.identifier.wosWOS:000690878300012en_US
dc.identifier.scopus2-s2.0-85107002248en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.matcom.2021.05.013-
local.message.claim2021-12-28T15:37:38.739+0300*
local.message.claim|rp02273*
local.message.claim|submit_approve*
local.message.claim|dc_contributor_author*
local.message.claim|None*
dc.authorwosidYaman, Olha Ivanyshyn/J-4438-2014-
dc.identifier.wosqualityQ1-
dc.identifier.scopusqualityQ1-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1-s2.0-S0378475421001853-main.pdf586.71 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 9, 2024

Page view(s)

38,772
checked on Nov 18, 2024

Download(s)

86
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.