Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/11368
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Orhan, Semih | - |
dc.contributor.author | Baştanlar, Yalın | - |
dc.date.accessioned | 2021-11-06T09:46:59Z | - |
dc.date.accessioned | 2024-01-06T07:22:33Z | - |
dc.date.available | 2021-11-06T09:46:59Z | - |
dc.date.available | 2024-01-06T07:22:33Z | - |
dc.date.issued | 2021 | - |
dc.date.issued | 2022 | - |
dc.identifier.issn | 1863-1703 | - |
dc.identifier.issn | 1863-1711 | - |
dc.identifier.uri | https://doi.org/10.1007/s11760-021-02003-3 | - |
dc.identifier.uri | https://hdl.handle.net/11147/11368 | - |
dc.description.abstract | Omnidirectional cameras are capable of providing 360. field-of-view in a single shot. This comprehensive view makes them preferable for many computer vision applications. An omnidirectional view is generally represented as a panoramic image with equirectangular projection, which suffers from distortions. Thus, standard camera approaches should be mathematically modified to be used effectively with panoramic images. In this work, we built a semantic segmentation CNN model that handles distortions in panoramic images using equirectangular convolutions. The proposed model, we call it UNet-equiconv, outperforms an equivalent CNN model with standard convolutions. To the best of our knowledge, ours is the first work on the semantic segmentation of real outdoor panoramic images. Experiment results reveal that using a distortion-aware CNN with equirectangular convolution increases the semantic segmentation performance (4% increase in mIoU). We also released a pixel-level annotated outdoor panoramic image dataset which can be used for various computer vision applications such as autonomous driving and visual localization. Source code of the project and the dataset were made available at the project page (https://github.com/semihorhan/semseg-outdoor-pano). © 2021, The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature. | en_US |
dc.description.sponsorship | This work was supported by the Scientific and Technological Research Council of Turkey (Grant No.120E500) | en_US |
dc.description.sponsorship | Türkiye Bilimsel ve Teknolojik Araştirma Kurumu, TÜBITAK: 120E500 | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.publisher | Springer Science and Business Media Deutschland GmbH | en_US |
dc.relation.ispartof | Signal, Image and Video Processing | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Semantic segmentation | en_US |
dc.subject | Computer vision applications | en_US |
dc.subject | Panoramic images | en_US |
dc.subject | Convolutional neural networks | en_US |
dc.subject | Omnidirectional vision | en_US |
dc.subject | Panoramic images | en_US |
dc.subject | Semantic segmentation | en_US |
dc.subject | Cameras | en_US |
dc.subject | Computer vision | en_US |
dc.subject | Convolution | en_US |
dc.subject | Semantics | en_US |
dc.subject | Autonomous driving | en_US |
dc.subject | Omni-directional view | en_US |
dc.subject | Omnidirectional cameras | en_US |
dc.subject | Panoramic images | en_US |
dc.subject | Semantic segmentation | en_US |
dc.subject | Standard cameras | en_US |
dc.subject | Visual localization | en_US |
dc.subject | Image segmentation | en_US |
dc.subject | Omnidirectional vision | en_US |
dc.subject | Convolutional neural networks | en_US |
dc.title | Semantic Segmentation of Outdoor Panoramic Images | en_US |
dc.type | Article | en_US |
dc.institutionauthor | Orhan, Semih | - |
dc.institutionauthor | Baştanlar, Yalın | - |
dc.department | İzmir Institute of Technology. Computer Engineering | en_US |
dc.identifier.volume | 16 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.startpage | 643 | en_US |
dc.identifier.endpage | 650 | en_US |
dc.identifier.wos | WOS:000684917000001 | - |
dc.identifier.scopus | 2-s2.0-85112537512 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1007/s11760-021-02003-3 | - |
dc.authorscopusid | 57195222511 | - |
dc.authorscopusid | 15833922000 | - |
dc.identifier.wosquality | Q3 | - |
dc.identifier.scopusquality | Q2 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.languageiso639-1 | en | - |
item.openairetype | Article | - |
item.grantfulltext | open | - |
item.fulltext | With Fulltext | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 01.01. Units Affiliated to the Rectorate | - |
crisitem.author.dept | 03.04. Department of Computer Engineering | - |
Appears in Collections: | Computer Engineering / Bilgisayar Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
32
checked on Mar 28, 2025
WEB OF SCIENCETM
Citations
32
checked on Mar 29, 2025
Page view(s)
65,888
checked on Mar 31, 2025
Download(s)
36
checked on Mar 31, 2025
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.