Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/11368
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOrhan, Semih-
dc.contributor.authorBaştanlar, Yalın-
dc.date.accessioned2021-11-06T09:46:59Z-
dc.date.accessioned2024-01-06T07:22:33Z-
dc.date.available2021-11-06T09:46:59Z-
dc.date.available2024-01-06T07:22:33Z-
dc.date.issued2021-
dc.date.issued2022-
dc.identifier.issn1863-1703-
dc.identifier.issn1863-1711-
dc.identifier.urihttps://doi.org/10.1007/s11760-021-02003-3-
dc.identifier.urihttps://hdl.handle.net/11147/11368-
dc.description.abstractOmnidirectional cameras are capable of providing 360. field-of-view in a single shot. This comprehensive view makes them preferable for many computer vision applications. An omnidirectional view is generally represented as a panoramic image with equirectangular projection, which suffers from distortions. Thus, standard camera approaches should be mathematically modified to be used effectively with panoramic images. In this work, we built a semantic segmentation CNN model that handles distortions in panoramic images using equirectangular convolutions. The proposed model, we call it UNet-equiconv, outperforms an equivalent CNN model with standard convolutions. To the best of our knowledge, ours is the first work on the semantic segmentation of real outdoor panoramic images. Experiment results reveal that using a distortion-aware CNN with equirectangular convolution increases the semantic segmentation performance (4% increase in mIoU). We also released a pixel-level annotated outdoor panoramic image dataset which can be used for various computer vision applications such as autonomous driving and visual localization. Source code of the project and the dataset were made available at the project page (https://github.com/semihorhan/semseg-outdoor-pano). © 2021, The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.en_US
dc.description.sponsorshipThis work was supported by the Scientific and Technological Research Council of Turkey (Grant No.120E500)en_US
dc.description.sponsorshipTürkiye Bilimsel ve Teknolojik Araştirma Kurumu, TÜBITAK: 120E500en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofSignal, Image and Video Processingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSemantic segmentationen_US
dc.subjectComputer vision applicationsen_US
dc.subjectPanoramic imagesen_US
dc.subjectConvolutional neural networksen_US
dc.subjectOmnidirectional visionen_US
dc.subjectPanoramic imagesen_US
dc.subjectSemantic segmentationen_US
dc.subjectCamerasen_US
dc.subjectComputer visionen_US
dc.subjectConvolutionen_US
dc.subjectSemanticsen_US
dc.subjectAutonomous drivingen_US
dc.subjectOmni-directional viewen_US
dc.subjectOmnidirectional camerasen_US
dc.subjectPanoramic imagesen_US
dc.subjectSemantic segmentationen_US
dc.subjectStandard camerasen_US
dc.subjectVisual localizationen_US
dc.subjectImage segmentationen_US
dc.subjectOmnidirectional visionen_US
dc.subjectConvolutional neural networksen_US
dc.titleSemantic segmentation of outdoor panoramic imagesen_US
dc.typeArticleen_US
dc.institutionauthorOrhan, Semih-
dc.institutionauthorBaştanlar, Yalın-
dc.departmentİzmir Institute of Technology. Computer Engineeringen_US
dc.identifier.volume16en_US
dc.identifier.issue3en_US
dc.identifier.startpage643en_US
dc.identifier.endpage650en_US
dc.identifier.wosWOS:000684917000001en_US
dc.identifier.scopus2-s2.0-85112537512en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1007/s11760-021-02003-3-
dc.authorscopusid57195222511-
dc.authorscopusid15833922000-
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ2-
item.fulltextWith Fulltext-
item.grantfulltextembargo_20250101-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept01.01. Units Affiliated to the Rectorate-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:Computer Engineering / Bilgisayar Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
11368.pdf
  Until 2025-01-01
2.97 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

22
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

22
checked on Nov 9, 2024

Page view(s)

65,728
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.