Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/11267
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jabrayilzade, Elgün | - |
dc.contributor.author | Poyraz Arslan, Algın | - |
dc.contributor.author | Para, Hasan | - |
dc.contributor.author | Polatbilek, Ozan | - |
dc.contributor.author | Sezerer, Erhan | - |
dc.contributor.author | Tekir, Selma | - |
dc.date.accessioned | 2021-11-06T09:27:14Z | - |
dc.date.available | 2021-11-06T09:27:14Z | - |
dc.date.issued | 2020 | - |
dc.identifier.isbn | 9781728172064 | - |
dc.identifier.uri | http://doi.org/10.1109/SIU49456.2020.9302027 | - |
dc.identifier.uri | https://hdl.handle.net/11147/11267 | - |
dc.description | 28th Signal Processing and Communications Applications Conference, SIU 2020 -- 5 October 2020 through 7 October 2020 | en_US |
dc.description.abstract | Statistical topic modeling aims to assign topics to documents in an unsupervised way. Latent Dirichlet Allocation (LDA) is the standard model for topic modeling. It shows good performance on document collections, documents being relatively long texts but it has poor performance on short texts. Topic modeling on short texts is on the rise due to the potential of social media. Thus, approaches that are able to nd topics on short texts as well as long texts are sought. However, there is a lack of datasets that include both long and short texts which have the same ground-truth categories. In this work, we release a Turkish movie dataset which contain both short lm descriptions and long subscripts where lm genre can be considered as topic. Furthermore, we provide multi-label movie genre classication results using a Feed Forward Neural Network (FFNN) taking LDA document-topic or Doc2Vec dense representations. © 2020 IEEE. | en_US |
dc.language.iso | tr | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers | en_US |
dc.relation.ispartof | 2020 28th Signal Processing and Communications Applications Conference, SIU 2020 - Proceedings | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Doc2Vec | en_US |
dc.subject | Feed-forward neural networks | en_US |
dc.subject | LDA | en_US |
dc.subject | Long text classication | en_US |
dc.subject | Short text classication | en_US |
dc.subject | Text classication dataset | en_US |
dc.title | Çok-etiketli film türü sınıflandırması için Türkçe konu modellemesi veri kümesi | en_US |
dc.title.alternative | A Turkish topic modeling dataset for multi-label classification of movie genre | en_US |
dc.type | Conference Object | en_US |
dc.department | İzmir Institute of Technology. Computer Engineering | en_US |
dc.identifier.wos | WOS:000653136100001 | en_US |
dc.identifier.scopus | 2-s2.0-85100310802 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1109/SIU49456.2020.9302027 | - |
dc.identifier.wosquality | N/A | - |
dc.identifier.scopusquality | N/A | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | tr | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Conference Object | - |
crisitem.author.dept | 03.04. Department of Computer Engineering | - |
crisitem.author.dept | 03.04. Department of Computer Engineering | - |
Appears in Collections: | Computer Engineering / Bilgisayar Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
A_Turkish_Topic.pdf | 223.29 kB | Adobe PDF | View/Open |
CORE Recommender
SCOPUSTM
Citations
2
checked on Nov 15, 2024
Page view(s)
3,770
checked on Nov 18, 2024
Download(s)
390
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.