Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/11261
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Delikoyun, Kerem | - |
dc.contributor.author | Demir, Ali Aslan | - |
dc.contributor.author | Tekin, Hüseyin Cumhur | - |
dc.date.accessioned | 2021-11-06T09:27:13Z | - |
dc.date.available | 2021-11-06T09:27:13Z | - |
dc.date.issued | 2021 | - |
dc.identifier.isbn | 9781510641457 | - |
dc.identifier.issn | 1605-7422 | - |
dc.identifier.uri | http://doi.org/10.1117/12.2572908 | - |
dc.identifier.uri | https://hdl.handle.net/11147/11261 | - |
dc.description | The Society of Photo-Optical Instrumentation Engineers (SPIE) | en_US |
dc.description | Label-free Biomedical Imaging and Sensing, LBIS 2021 -- 6 March 2021 through 11 March 2021 | en_US |
dc.description.abstract | Magnetic levitation is an effective tool for separating target cells within a heterogeneous solution by utilizing density differences among cell lines. However, magnetic levitation cannot be used to identify target cells which have similar density profile as the other cells in the solution. Therefore, accuracy of cell identification can dramatically reduce. In this study, we introduce, for the first time, the use of deep learning-based object detection approach for label-free identification of rare cancer cells within levitated cells. As a result, our novel and hybrid detection strategy could be used to identify circulating tumor cells for diagnosis and prognosis of cancer. © 2021 SPIE. | en_US |
dc.language.iso | en | en_US |
dc.publisher | SPIE | en_US |
dc.relation.ispartof | Progress in Biomedical Optics and Imaging - Proceedings of SPIE | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Circulating tumor cell | en_US |
dc.subject | Deep learning | en_US |
dc.subject | Magnetic levitation | en_US |
dc.subject | Object detection | en_US |
dc.subject | Point-of-care testing | en_US |
dc.title | Label-free detection of rare cancer cells using deep learning and magnetic levitation principle | en_US |
dc.type | Conference Object | en_US |
dc.department | İzmir Institute of Technology. Bioengineering | en_US |
dc.identifier.volume | 11655 | en_US |
dc.identifier.scopus | 2-s2.0-85107930256 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1117/12.2572908 | - |
dc.authorscopusid | 57211432087 | - |
dc.authorscopusid | 57224569128 | - |
dc.authorscopusid | 56781554300 | - |
dc.identifier.wosquality | N/A | - |
dc.identifier.scopusquality | Q4 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.openairetype | Conference Object | - |
item.languageiso639-1 | en | - |
crisitem.author.dept | 03.01. Department of Bioengineering | - |
crisitem.author.dept | 03.01. Department of Bioengineering | - |
Appears in Collections: | Bioengineering / Biyomühendislik Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
1
checked on Nov 22, 2024
Page view(s)
3,912
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.