Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/11250
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yılmaz, Rahime | - |
dc.contributor.author | Nalçakan, Yağız | - |
dc.contributor.author | Haktanır, Elif | - |
dc.date.accessioned | 2021-11-06T09:27:12Z | - |
dc.date.available | 2021-11-06T09:27:12Z | - |
dc.date.issued | 2022 | - |
dc.identifier.isbn | 9783030855765 | - |
dc.identifier.issn | 2367-3370 | - |
dc.identifier.uri | http://doi.org/10.1007/978-3-030-85577-2_48 | - |
dc.identifier.uri | https://hdl.handle.net/11147/11250 | - |
dc.description | International Conference on Intelligent and Fuzzy Systems, INFUS 2021 -- 24 August 2021 through 26 August 2021 | en_US |
dc.description.abstract | Researchers have successfully implemented machine learning classifiers to predict bugs in a change file for years. Change classification focuses on determining if a new software change is clean or buggy. In the literature, several bug prediction methods at change level have been proposed to improve software reliability. This paper proposes a model for classification-based bug prediction model. Four supervised machine learning classifiers (Support Vector Machine, Decision Tree, Random Forrest, and Naive Bayes) are applied to predict the bugs in software changes, and performance of these four classifiers are characterized. We considered a public dataset and downloaded the corresponding source code and its metrics. Thereafter, we produced new software metrics by analyzing source code at class level and unified these metrics with the existing set. We obtained new dataset to apply machine learning algorithms and compared the bug prediction accuracy of the newly defined metrics. Results showed that our merged dataset is practical for bug prediction based experiments. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Lecture Notes in Networks and Systems | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Bug prediction | en_US |
dc.subject | Classification | en_US |
dc.subject | Code analysis | en_US |
dc.subject | Code metrics | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Software metrics | en_US |
dc.title | A novel feature to predict buggy changes in a software system | en_US |
dc.type | Conference Object | en_US |
dc.institutionauthor | Nalçakan, Yağız | - |
dc.department | İzmir Institute of Technology. Computer Engineering | en_US |
dc.identifier.volume | 308 | en_US |
dc.identifier.startpage | 407 | en_US |
dc.identifier.endpage | 414 | en_US |
dc.identifier.scopus | 2-s2.0-85115224913 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1007/978-3-030-85577-2_48 | - |
dc.identifier.wosquality | N/A | - |
dc.identifier.scopusquality | Q4 | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Conference Object | - |
Appears in Collections: | Computer Engineering / Bilgisayar Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
1
checked on Nov 15, 2024
Page view(s)
180
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.