Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/10993
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Batal, Ahmet | - |
dc.contributor.author | Yazan, Tuğba | - |
dc.date.accessioned | 2021-07-04T09:36:07Z | - |
dc.date.available | 2021-07-04T09:36:07Z | - |
dc.date.issued | 2020-07 | en_US |
dc.identifier.citation | Yazan, T. (2020). Semigroup theory and some applications. Unpublished master's thesis, İzmir Institute of Technology, İzmir, Turkey | en_US |
dc.identifier.uri | https://hdl.handle.net/11147/10993 | - |
dc.description | Thesis (Master)--Izmir Institute of Technology, Mathematics, Izmir, 2020 | en_US |
dc.description | Includes bibliographical references (leaves: 53-54) | en_US |
dc.description | Text in English; Abstract: Turkish and English | en_US |
dc.description.abstract | n the present thesis, we consider the evolution equation (Cauchy problem) which is the basis for our study. We show how various linear partial differential equations can be transformed into the Cauchy problem form. Solving the Cauchy problem is equivalent to find a family of evolution operators T(t) which sends the initial state of the system to the solution state at a later time t. It turns out that this family of operators T(t) must satisfy some properties which we call semigroup properties. We state the Hille-Yosida and Lumer-Phillips theorems to characterize contraction semigroups. Moreover, we apply these theorems to the heat and wave equations as examples. We also consider strongly continuous operator groups and Stone's theorem. Finally, we give some essential conditions to obtain wellposed evaluation equation and introduce an inhomogeneous Cauchy problem. | en_US |
dc.description.abstract | Bu tezde, çalışmamızın temelini oluşturan ilerleme denklemi (Cauchy problemi) ele alındı. Çeşitli lineer kısmi diferansiyel denklemlerin Cauchy problem formuna nasıl dönüştürülebildiğini gösterdik. Cauchy problemini çözmek, sistemin başlangıç konumunu t zaman sonraki çözüm konumuna götüren T(t) ilerleme operatör ailesi bulmaya eşdeğerdir. Bu T(t) operatörleri ailesinin semigrup özellikleri olarak adlandırdığımız bazı özellikleri karşılaması gerektiği ortaya çıktı. Daralan semigrupları karakterize etmek için Hille-Yosida ve Lumer-Phillips teoremlerini açıkladık. Dahası bu teoremleri örnek olarak ısı ve dalga denklemlerine uyguladık. Ayrıca güçlü sürekli operatör gruplarını ve Stone teoremini de inceledik. Son olarak, iyi tanımlanmış ilerleme denklemini elde etmek ve homojen olmayan Cauchy problemini tanıtmak için bazı temel koşullar sunduk. | en_US |
dc.format.extent | vi, 54 leaves | en_US |
dc.language.iso | en | en_US |
dc.publisher | Izmir Institute of Technology | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Semigroups | en_US |
dc.subject | Cauchy problem | en_US |
dc.subject | Hille-Yosida theorem | en_US |
dc.subject | Lumer-Phillips theorem | en_US |
dc.title | Semigroup theory and some applications | en_US |
dc.title.alternative | Semigrup teorisi ve bazı uygulamaları | en_US |
dc.type | Master Thesis | en_US |
dc.authorid | 0000-0001-9870-3131 | en_US |
dc.department | Thesis (Master)--İzmir Institute of Technology, Mathematics | en_US |
dc.relation.publicationcategory | Tez | en_US |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Master Thesis | - |
Appears in Collections: | Master Degree / Yüksek Lisans Tezleri |
Files in This Item:
File | Size | Format | |
---|---|---|---|
10347444.pdf | 257.53 kB | Adobe PDF | View/Open |
CORE Recommender
Page view(s)
292
checked on Nov 18, 2024
Download(s)
2,234
checked on Nov 18, 2024
Google ScholarTM
Check
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.