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ABSTRACT

SEMIGROUP THEORY AND SOME APPLICATIONS

In the present thesis, we consider the evolution equation (Cauchy problem) which
is the basis for our study. We show how various linear partial differential equations can
be transformed into the Cauchy problem form. Solving the Cauchy problem is equivalent
to find a family of evolution operators 7(¢) which sends the initial state of the system
to the solution state at a later time t. It turns out that this family of operators 7'(f) must
satisfy some properties which we call semigroup properties. We state the Hille-Yosida
and Lumer-Phillips theorems to characterize contraction semigroups. Moreover, we ap-
ply these theorems to the heat and wave equations as examples. We also consider strongly
continuous operator groups and Stone’s theorem. Finally, we give some essential condi-
tions to obtain wellposed evaluation equation and introduce an inhomogeneous Cauchy

problem.

Keywords: Strongly Continuous Operator Semigroup, Contraction Semigroup, Cauchy

Problem, Hille-Yosida Theorem, Lumer-Phillips Theorem
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OZET

SEMIGRUP TEORISI VE BAZI UYGULAMALARI

Bu tezde, calismamizin temelini olusturan ilerleme denklemi (Cauchy problemi)
ele alindi. Cesitli lineer kismi diferansiyel denklemlerin Cauchy problem formuna nasil
doniistiiriilebildigini gosterdik. Cauchy problemini ¢dzmek, sistemin baslangi¢c konu-
munu t zaman sonraki ¢oziim konumuna gotiiren 7'(¢) ilerleme operator ailesi bulmaya
esdegerdir. Bu 7' (¢) operatorleri ailesinin semigrup 6zellikleri olarak adlandirdigimiz bazi
ozellikleri karsilamas1 gerektigi ortaya c¢ikti. Daralan semigruplari karakterize etmek i¢in
Hille-Yosida ve Lumer-Phillips teoremlerini acikladik. Dahasi bu teoremleri 6rnek olarak
151 ve dalga denklemlerine uyguladik. Ayrica giiglii siirekli operator gruplarimi ve Stone
teoremini de inceledik. Son olarak, iyi tanimlanmis ilerleme denklemini elde etmek ve

homojen olmayan Cauchy problemini tanitmak i¢in bazi temel kosullar sunduk.

Anahtar Kelimeler: Giiclii Siirekli Operatér Semigruplari, Daralan Semigruplar, Cauchy

Problemi, Hille-Yosida Teorem, Lumer-Phillips Teorem
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CHAPTER 1

INTRODUCTION

Let us consider the following Cauchy problem

u'(t) = Au(), t>0, (1.1)

u(0) = ug

where u belongs to the state space X and A is an operator on X with domain D(A). Finding
the solution of the above problem is equivalent to find an evolution rule which describes
how the next state of the system follows from the current state. Mathematically such a
rule can be described by a one-parameter family of operators 7'(¢#) which send the initial
state ug at t+ = 0 of the system to T(#)uy at a later time ¢. For example if X = C" and A
is an n X n matrix, corresponding family of operators is of the form T'(f) = e, hence the
solution u(f) at any time ¢ > 0 can be computed as u(f) = e"uy. However if X is an infinite-
dimensional Banach space and A is an unbounded operator, existence and computation of
such family of evolution operators 7'(¢) are not trivial. Investigation of such family of
evolution operators 7'(¢) under this general setting leads to the development of the area
which we now call semigroup theory.

The theory of semigroups on Banach spaces was developed by the Hille-Yosida
theorem in 1948 with valuable works of E. Hille and K. Yosida. This theorem states some
conditions on an operator A to generate strongly continuous contraction semigroup. W.
Felder, 1. Miyedera, and R. Phillips generalize the Hille-Yosida theorem to semigroups
which are not contractions in (Feller, 1953). By the Lumer-Phillips theorem, some con-
ditions are replaced by a more suitable one (Lumer, 1961).

Semigroup theory has many fields of application, for instance, functional differ-
ential equations, integro-differential equations, quantum mechanics, infinite dimensional
control theory. So far, a huge number of connections to other disciplines of mathematics

have been explored such as ergodic theory, numerical analysis, partial differential equa-



tions, stochastic processes.
The thesis is organized as follows.

In chapter 2, we collect some essential tools from functional analysis, operator
theory and spectral theory.

In chapter 3, we introduce strongly continuous operator semigroups 7°(-). More
clearly, we start with the definition of Cy-semigroup and establish a relation between each
semigroup and its generator A. It is also shown that the Cy-semigroup gives the unique
solution of the Cauchy problem.

In chapter 4, we are interested in answering the question of how to check that a
given operator generates a strongly continuous semigroup. For this purpose, we construct
several essential conditions and study the Hille-Yosida theorem which characterizes the
generators of contraction semigroups using the resolvent estimate. We prove this main
theorem by means of Yosida’s idea explained in (Engel and Nagel, 1999).

Chapter 5 is devoted to the study of the Lumer-Phillips theorem which gives a
necessary and sufficient condition for a given operator A to generate a contraction semi-
group. To apply this theorem we need two new notions such as dissipativity and range
condition. We introduce the concept of Cy-group and proceed with the Stone’s theorem
(Stone, 1932). It states that skew-adjoint operators generate the unitary Cy-group on a
Hilbert space.

In chapter 6, we also present examples to show the application of general results
given in Hille-Yosida theorem and Lumer-Phillips theorem (Lumer, 1961) such as heat
and wave equations.

In chapter 7, we show that the existence of a strongly continuous operator semi-
group of the Cauchy problem being wellposed. To that purpose, we introduce the notion
of wellposedness. Then we proceed with the study of an inhomogeneous Cauchy prob-
lem.

In conclusion, we summarize the main results obtained in this thesis.



CHAPTER 2

PRELIMINARIES

This chapter consists of some basic definitions and facts. We will use the results of
the closed graph theorem and state the adjoint operators. For functional analysis tools and
more details, we refer the reader to (Kreyszig, 1978), (Schnaubelt, 2012) and (Hundert-
mark et al., 2013). Also one may find the source about Sobolev spaces, weak derivatives
as well as Gauss’ and Green’s formula and more details in (Schnaubelt, 2012) and (Hun-
dertmark et al., 2013).

Notation: For a given operator A, D(A) denotes its domain.

Definition 2.1 Let X and Y be normed spaces and let A : D(A) C X — Y be a linear

operator. A is called closed if its graph
Gr(A) ={(x,y) | xe D(A) and y = Ax }

is closed in the Cartesian product X X Y. The graph norm is defined by ||x||4 := ||x||lx +
|[Ax|ly. We will denote (D(A), || - |la) by [D(A)].

Lemma 2.1 Let X and Y be Banach spaces and A : D(A) C X — Y be a closed operator

with D(A). The closed graph theorem states that if D(A) is closed then A is continuous.

Property 2.1 Let A be a closed operator on a normed space X and g be a continuous
function on [a, b] with g(t) in D(A) for every t € |a, b] such that Ag is continous on |a, b].
We thus get,
b b b
f g(t)ydt e D(A) and Af g(ndt = f Ag(t)dr.

Property 2.2 Let f be a continuous function from an interval [a, b] to normed space X.

By the Fundamental Theorem of Calculus, the map

- ff@d-f



is differentiable and

d !
5[ f(&dé = f(t), forallte[a,b]. 2.1

Let g be a continuously differentiable function from [a, b] to X and t € [a, b]. We have

f g'(&)d¢ = g(n) - g(a). (2.2)

Property 2.3 Let f be a continuous function from an interval [a, b) to a normed space X

andt € [a, b). Then we have

t+h
lf f(rydr - f(t) ash— 0.

h
Property 2.4 C.(R) = {g € CR)|supp g is compact }is densein Co(R) = {g € CR)| g(s) —
0 as |s| — oo}.

Proof For all n € N we take a function ¢, € C(R) with

1, s € [—n,n]

s+n+1, sE€[-n—-1,-n]
QO,,(S):
-s+n+1, senn+1]

0, otherwise

and supp ¢, € (—n — 1,n + 1). For each h € Cy(R) then we have ¢,h € C.(R) and

I = @nhlle = sup [(1 = @,())h(s)] < sup [A(s)] = O asn — co.

sl [IslIzn

Property 2.5 A is closed if the resolvent R(A,A) = (AI — A)™! exists and is bounded for



at least one value of parameter A € C.

Proof Suppose that (A — A)~! exists and it is bounded for some A € C then p(A) # 0.
Let x, € D(A), x, — x and Ax, — y. Then

x = lim@QI — A" = A)x, = (A = A) ' lim(A — A)x, = AT - A) ' (Ax—y). (2.3)

n—oo n—oo

Therefore, x € (Al — A)™'X = D(A). From equality (2.3),

Al = A)x = =AU - A) ' (Ax—y) = Ax—y.

We obtain Ax = y and thus A is closed. m|

2.1. Adjoint Operator

Definition 2.2 Let X and Y be topological vector spaces and let A : D(A) C X — Y be a
linear operator. A is called densely defined if D(A) is dense in X.

Definition 2.3 Let X be a Banach space and let A be a linear densely defined operator
on X. The adjoint A is given by A*x"* := 7" for each x* € D(A*), where

D) :={x" e X" |7 e X'Vx e D(A) : (Ax,x") =(x,7)}.

Definition 2.4 Let X be a Hilbert space with an inner product (+|-) and let A be a linear
densely defined operator on X. The Hilbert adjoint A’ of A is given by A’y := z for each
y € D(A"), where

D(A") :={ye X|dze X Vx e D(A) : (Axly) = (x[2)}.

Definition 2.5 Let X be a Hilbert space and A : D(A) — X be a linear and densely



defined operator on X. Then A is called symmetric if for each x,z € D(A),

(Axlz) = (x|A2).

Definition 2.6 Let A be a linear densely defined operator on a Hilbert space. A is called
self-adjoint if A = A’ and skew-adjoint if —A = A’.

Definition 2.7 A map T on a complex vector space X is called antilinear if

Twu+v)=Tw)+TW) u,velxX,

T(au)=aT(u) aeC,uelX.

Property 2.6 ((Schnaubelt, 2012), Theorem 4.7) Let A be a closed and symmetric oper-

ator. Then the following assetions are satisfied.
a) If p(A) NR # 0, then o(A) CR.
b) o(A) C R ifand only if A is self-adjoint.

Property 2.7 (Hundertmark et al., 2013) Let A and C be linear operators. If A C C and
p(A) N p(C) # O then we have A = C.

Proof Suppose that 1 € p(A) (M p(C) then Al — A and Al — C are bijective. By the
assumption A € C, we have Al — A C Al — C such that A1 — A is surjective and A/ — C is
injective. Then we need to show that D(AI — C) C D(AI — A). Take x € D(AI — C). By the
surjectivity of A/ —A there exist y € D(Al —A) such that (A/ = C)x = (A -A)y = (U -C)y.
The injectivity of A/ — C gives x =y and so x € D(A] — A). Hence Al — A = Al — C which
also imply A = C. O

Definition 2.8 Let A be a linear and bounded operator on a Hilbert space X. A is called

unitary if it has inverse with A~' = A’



2.2. Weak Derivative and Sobolev Space

Definition 2.9 Let U C R” be open, i € {1,...,n} and p € [1,00]. Let u be a function in
LP(U). We say u has a weak derivative v in L (U) if there exists a function v € LP(U)

such that
f u(x)d p(x)dx = (=) f v(x)e(x) dx (2.4)
U

U

for all ¢ € CX(U) and we set v := d'u where 8’ := ' ...0p and |i| := i\ + iy + ... + iy.

Definition 2.10 Letk € Nand p € [1, o). The Sobolev space W’;(U ) consists of functions
u € LP(U) such that for each multi index i with |i| < k, the mixed weak derivative 6'u €

LP(U). The norm of u € Wﬁ(U) is defined by

k 1/p
el = [nunz +> ||a‘u||§) . ifp <o,
i=1
and
e, = max{llules, [9ulle), —if p = oo.
1<i<k

The Sobolev space with p = 2 is denoted by Wé‘(U) = HXU) and for k = 0, we set
Wg(U) = LP(U).

Definition 2.11 Let U be an open subset of R", k € N and p € [1,00). The closure of
C2(U) in WA(U) is denoted by Wi(U).

Theorem 2.1 (Schnaubelt, 2012) Let U be an open subset of R", k € N and p € [1, 00).
Then WYR") = WXR") and H(U) = WA(U).

Theorem 2.2 (Schnaubelt, 2012) Let U be an open and bounded subset of R" with 0U €
C? Let p € [1,00], F € W) (U)" and ¢ € W;),(U) with ;17 + [% = 1. Then we have Gauss’

Jormula

fdiv(F)godx:—fF-Vgpdx+f n-Fedo (2.5)
U U au

where n is the outer unit normal of 0U.

Ifue Wy(U) and v € W;,(U) with F = Vu, we obtain Green’s formula

f (Auv — uAv)dx = f (O,uv — ud,v)do. (2.6)
U U



Property 2.8 Let U C R” be an open subset, p € (1,), F € W;(U)" and ¢ € W;pl,(U).
Then
f div(F)pdx = - f F - Vpdx. 2.7)
U

U
If U = R", equations (2.5) and (2.6) hold without the boundary integral.

Property 2.9 Let U be an open bounded subset in R" and 1 < p < oo. The Poincaré’s

inequality states that for a constant 6 > 0 such that

Vu e Wi(U) f Vul? dx > & |lull. (2.8)
U

2.3. Fourier Transform

Definition 2.12 For an integrable function f in R", the Fourier transform is defined by

1 |
e fR foerdx

F &) = f§&):=

where ¢ e R" and & - x = Y_, Exx.

Property 2.10 (Hundertmark et al., 2013) The Fourier transform extends to a unitary
operator F : L*(R") — L*(R™) with (F ' f)(x) = (Ff)(=x). Letk € Nand j € 1,....n.
Then the following properties hold.

a) F(0%) = i EFu.
b) du =iF '(&i) foru € H'(R).

c) H'R") := {u € L*(R") : Ifléﬁ € LA(RM)).



CHAPTER 3

STRONGLY CONTINUOUS SEMIGROUPS

In many books on semigroup theory, the definitions and properties related to
strongly continuous semigroups are presented. We follow (Engel and Nagel, 1999), (Pazy,

2012) and (Hundertmark et al., 2013).

Definition 3.1 Let X be a complex Banach space. We call a map T(-) : R, — B(X) the
strongly continuous operator semigroup or Cy-semigroup if the following properties are

satisfied.
a) T(0) =1, where I is the identity operator on X.
b) T(t+s)=THT(s) forallts=>D0.
¢) For every x € X the orbit,
THx: R, —> X, - T®x iscontinuous.

Definition 3.2 The generator A of T(:) is defined by
Ax := lim %(T(t)x - X)
t—0*

where

D) ={xeX: lirgl %(T(t)x — x) exists in X }.
t—0*
If A is the generator of T(-), we also say that A generates T(-).

The conditions a) and b) in Definition 3.1 are called the semigroup laws and c) is the

strong continuity.

Example 3.1 Let A be a linear bounded operator on a Banach space X and let

P r
Spy=1+tA+ —=A*+ —

t"l
3 n
o 3!A +---+—n!A, fort>0.



Our claim is that S, is Cauchy. Let € > 0. Since e* = Y}, ,‘(—k, converges for every s € R

k k
there exists N € N such that ;. % < &. Then, for alln,m > N

n

<3

k=m+1

”Sn _Sm” =

= lffIAlF
< Z m <e&.

k=m+1

i ﬁAk ﬁAk
k! k!

k=m+1

Y ﬁAk N ﬁAk
;k! _;k!

Since S, is Cauchy and X is a Banach space, S, converges. Let us denote the limit by

n

~

T(r) =" := i A",

n=0

|

N

Now we check that T(-) satisfies the conditions of Cy-semigroup. For t,s > 0, we have

(o) tn (o]
THT(s) = e = Z —ATY Zpm
— n!

m=0
1? 2
:(I+tA+5A2+-~).(1+SA+5A2+---)

(t+s)2 ) (t+s)3
S TREAEY

> (14 5)"
= Gl 'S) A" = o194 = (1 4 )
o n:

=TI+ (t+5)A+ Ad+

and also T(0) = e** = I. T(¢) is uniformly continuous as follows

(9

B S

|
s n.

IT@®) -1l =

(tA)"
n!

[s+]
n=1

as t — 0. Uniform continuity of T (t) implies strong continuity.

T(-) satisfies the conditions of Cy-semigroup and also 7'(-) is continuously differ-
entiable with 4¢ = A¢™. In addition, the solution u : R, — X of equation (1.1) can
be described as u(t) = e"u, for uy € X. The conditions given above are satisfied for any
bounded linear operator A on a Banach space X.

Note that the above example shows the Cy-semigroup T(f) = e for a given

bounded operator A is exponentially bounded, i.e., ||T(#)|| < e!l. This situation is not spe-

10



cial to semigroups generated by a bounded operator only. Indeed for any Cy-semigroup,

exponentially boundedness is satisfied as the following lemma states.
Lemma 3.1 Let T(-) be a Cy-semigroup. There are constants w > 0 and M > 1 such that

IT@®| < Me*“", 0 <t < 0.

Proof Let us prove that there is an & > 0 such that ||7°(¢)|| is bounded for 0 < ¢ < &. For
a contradiction, suppose that the claim is false then there exists a sequence (#,),cn Which

converges to 0. Asn — oo and ||T(¢,)|| > n. Uniform boundedness principle implies

that for some x € X, ||T(¢,)x|| is unbounded. But this contradicts to definition of strong
continuity of semigroups. We conclude that [|7(#)]| < M forO0 <t < ¢ as|[TO)| =1, M
must be grater than or equal to 1. Letw = & 'logM > 0and t = né + 6 where 0 < 6 < ¢

and using semigroup properties, we get

TN =NTOTE)"|| < MM" < M.M¢ < Me® for 0<1< oo,

Definition 3.3 For a Cy-semigroup T(-) with a generator A, we call

wo(T) := wy(A) := inflw e R | AM, > 1: ||T()|| £ Mye”" forall t > 0}

the growth (exponential) bound of T ().

Lemma 3.2 (Engel and Nagel, 1999) Let T (t) be a semigroup on a Banach space X. Then

the following conditions are equivalent.
a) T(t);0 is strongly continuous.
b) tlirgl T(t)x = x forevery x € X.
c¢) There exist ty > 0 and a dense subspace S C X such that

D) sup{lIT@®I10<t<15) < oo,

ii) lirgl T(t)x = xforeach x € S.
t—0*

11



Proof The assertion a) = ii) follows from the definition of strong continuity. To prove
that a) = i), we suppose that the negation of condition i) is true. Assume that there is
a sequence (,),en that converges to O such that ||7(z,)|| diverge to infinity as n — oo.
This implies that by uniform boundedness principle, for some element x € X ||T(z,)x]| is
unbounded for all n» € N and hence 7'(¢),»¢ is not continuous.

To show the implication ¢) = b), we assume ||T(?)|| < M for all 0 <t < ;. Let
z € X and € > 0. Since S is dense in X, there exist x € S such that ||x — z|| < £ and also
condition ii) implies that there is #; > 0 such that ||T(#)x — x|| < & for all # < ¢;. Then for

all r < 17, we have

IT®)z = zll < 1Tz = 0l + [IT(Ox — x|| + [lx = z|

<ITOIllz = x| +&+e < (M+2)e.

Thus T'(¢) is strongly continuous for all x € X and ¢+ > 0. The proof is completed by

showing that b) = a). We have for every x € X and t,h > 0

Jim I7G + hyx = T« < ITOIl. im [I7'(h)x = x|

< Me hlir(r)1+ |7 (h)x — x|| =0,

which proves the right continuity. For ¢ > i > 0, note that ||T(¢ — h)|| < Me“"™" < Me“!,

Hence

hlir(r)1+ |7(t = h)x—T(@)x|| = hlir(r)1+ |T(t—h)x—T—-hTH)x|| <I||T(-h). ]lir(r)1+ 17 (h)x — x]|

< Mt hlir(r)1+ IT(h)x - x| = 0,

which proves the left continuity. O

Definition 3.4 Let A be a linear operator on X with D(A) and let x € D(A). Then a

12



function u : R, — X is the solution of the Cauchy problem if

u'(t) = Au(t), t=>0, 3.1

u(0) = x

where u € C'(R,, X) satisfies u(t) € D(A) for each t > 0.

Proposition 3.1 For the generator A of a Cy-semigroup T (1), the following conditions

hold.
a) If x € D(A) then T(t)x € D(A) and AT (t)x = T(t)Ax for all t > 0.

b) The functionu : R, — X, t — T(t)x is unique solution of (3.1).
Proof For part a) we take x € D(A) and h > 0, then T'(1)x € D(A) if hlirg %(T(t + h)x —

T (t)x) exists. Indeed

hlirg LT (t+ h)x = T(0)x) = hh% HT(OT(W)x — T(1)x), since T(¢) is continuous,

=T@) ,}1%1 LT (h)x - x) = T(HAx.

Hence by definition 7'(1)x € D(A), AT(t)x = T(t)Ax and also T'(-)x is differentiable from

right. In addition, for0 < h < ¢
]lirg %(T(t)x —T@-hx) = hli%l+ T(t- h)%(T(h)x —x)=T(Ax,

which shows that T(-)x is differentiable from left as well. Hence we obtain T(-)x €
C'(R,,X) and %T(-)x = AT(-)x. Thus u solves the equation (3.1). For uniqueness, sup-
pose that w is a solution of the equation (3.1) and ¢ > 0. We define u(s) = T(t — s)w(s), s

in [0, ¢]. Taking derivative of both sides with respect to s, we have

W(s)=-T( - s)Aw(s) + T(t — s)w'(s) = T(t — s)(—Aw(s) + W' (s)) =0

13



since w is a solution of (3.1). Consequently, for each functional x* in X* the function

(u(+), x*) has derivative which equals to 0 and so it is constant. Then we have

(W(0), x°) = {u(0), x*) = u(0), x) =T ()x, x")

for all x* € X* and ¢ > 0. We obtain 7'(-)x = w which shows the uniqueness of solution. O

14



CHAPTER 4

CHARACTERIZATION OF GENERATORS AND
HILLE-YOSIDA THEOREM

Lemma 4.1 Let T(-) be a Cy-semigroup with generator A. Then S (t) := €T (at) is also

a Cy-semigroup generated by B = ul + aA with D(A) = D(B) where u € C and a > 0.

Proof We assume that 7'(-) is a Cyp-semigroup and then we need to show that S ()

satisfies the semigroup law and strong continuity. First, we have
S(t+5) = T (at + 5)) = ' T(a)e“T(as) = S(H)S(s), foralls,s>0,
and S (0) = I. From the strong continuity of 7(¢),
lim § ()x = lim T (ert)x = T(0)x = x, forall x€X.
We conclude that S (-) is a Cy-semigroup. Let B be the generator of S (-). Then

Bx = lim %(S (H)x — x) = lim %(e’”T(a/t)x - X)
t—0* t—07t
= lim £("T(at)x — x)
t—0+ ¢
1 (1 1, ut
= ,11)%1 ae ((a—t(T(a/t)x - x)) + (ex - x))

= aAx + ux,

which also shows D(A) = D(B). O
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Lemma 4.2 (Hundertmark et al., 2013) Let T(-) be a Cy-semigroup with generator A,
t>0andx € X. Then fot T(s)xds € D(A) and

T(t)x—x:AfT(s)xds ifxeX “4.1)
0

= f T(s)Axds if x € D(A). (4.2)
0

Proof Let?> 0and x € X, we have

! 1 ! !
. 1 _ — 1 - _
;115(1)1 +(T'(h) I)f0 T(s)xds hli)r(l)l+ A fo T(h+ s)xds f(; T(s)xds)

1 t+h !
:}}Lrgz L T(s)xds—‘f0 T(s)xds)

1 ! t+h !
= lim — f T(s)xds + f T(s)xds — f T(s)x ds)
=0+ h \Jy, t 0

1 t+h 1 h
= lim (Zf T(s)xds — Ef T(s)xds) by Property 2.3,
t 0

We conclude that fot T'(s)xds belongs to D(A) and also (4.1) is satisfied. If x € D(A), first

note that in part a) of the proof of Proposition 3.1 we showed d%T(-)x = AT(-)x. Hence

fT(s)Axds=fAT(s)xds:f iT(s)xds
0 0 o ds

t
:f(T(s)x)/ds by Property 2.2,
0

=T({)x— x.

O

The next proposition yields some essential properties of a generator of a Cy-semigroup .

Proposition 4.1 If A is a generator of a Cy-semigroup then A is a closed and densely

defined operator.
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Proof We begin by proving the closedness of A. Let x, be a sequence in D(A) which

converges to x € X and let Ax, converge to y € X. From equation (4.2),

1 1
;(T(t)x —x) = lim ;(T(t)xn - Xp)
1 !
= lim - T(s)Ax,ds since T(¢)is continuous,

n—oo [ 0

1 !
= —f T(s)yds.
t Jo

Then Property 2.3 gives that
Ax = lirgl %(T(t)x - X) =Y,
t—0*

which shows x € D(A) and Ax = y. Hence A is closed. To prove density property, let
x € X and for & > 0 we set x;, = %foh T(s)xds. From Lemma 4.2, we know x;, € D(A).

Moreover by Property 2.3, x;, converges to x as h — 0. O

Definition 4.1 Let A be a given linear close operator on a Banach space X. The resolvent
set is defined to be p(A) :={1e€ C| Al — A : D(A) — X is bijective}. For A € p(A) the
family of bounded linear operators R(A,A) = (AI — A)~" is called the resolvent of A.

Proposition 4.2 Let T(-) be a Cy-semigroup generated by A. If for some A € C
R()x := f e BT (s)xds
0

exists for each x € X then A € p(A) and R(4,A) = R(A).

Proof By Lemma 4.1, we see that T(s) = e *T(s) is a Co-semigroup with generator

A — Al. For all x € X, we have
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1 1 !
hlir(r)l %(Tﬁ(h) - DR(Wx = hlirgl lim E(Tﬂ(h) ) f T (s)x ds) by the continuity of T,
-0t -0t \r—>0 0

1 1 [
= lim (lim — | T,k + s)xds — lim — f Ti(s)xds
h 0 t—00 h 0

h—0% \t—o0

t+h

1 1
= lim (lim— | Ty(s)xds - lim — f T(s)xds
I’l t—00 h 0

h—0* \ >0 I

t+h

h—0% \t—o0

L[ 1
= lim (lim — [ Ty(s)xds + lim — f
h h 1—00 h ¢
t+h

1 I
= lim {lim — Ts)xds — —f T (s)xds
h h Jo

h—0* \t—o0 p

Since fooo e T (s)xds exists

1 h
= _E j(: T,l(S)XdS

= — 0T (0)x

Here we find that R(1)x € D(A — AI) = D(A) and (A — A)R(A)x = —x. For x € D(A), we
get

!
R(A)(AI — A)x = limf e BT (s)(A — A)xds since T(s)Ax = AT(s)x,
—o0 0

!
=1lim | (A —A)e™*T(s)xds by Property 2.1,
0

—o0

=l-A) limf e BT(s)xds = (U — A)R(D)x = x.
= Jo

By Proposition 4.1, A is a closed operator. We thus have 4 € p(A) and R(4,A) = R(1) =
Al - A" O

1 !
Ti(s)xds — lim — f T,l(s)xds)
[—00 h 0
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Corollary 4.1 Foralln e N,w € Rand A € C, if wy(A) < w < Re 4, then

i M
IR(A, A)"|| < Rel—wy (4.3)

where M > 1 satisfying ||T(¢)|| < Me*" for all t > 0.

Proof By Theorem 1.13 in (Schnaubelt, 2012), the resolvent map is analytic with

n

d/l’lR(/l’A) = (-=1)"n! R(A, A", “4.4)
Then, we have for all x € X
o (=D a! GO A A
R(1,A)'x = Mdﬁﬂ—lR(/l’A)x = =D f d/l”‘le T(s)xds. 4.5)

On the other hand, if Re 1 > w,
lle T (s)x|| < Me RS x = Me@ RV
which is integrable. Hence fooo e YT (s)xds exists. By Proposition 4.2
R(A,A)x = fo ) e T (s)xds.

When we apply induction to the following identity

d d OO (o]
ﬁR(ﬂ,A)x = fo e BT(s)xds = fo (—5)e T (s)xds (4.6)
we get
n—1 00
R A)x = fo (-1 e T (s)xds. (4.7)
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Substituting (4.7) into (4.5), we have

R(A,A)'x =

(n—l)!j(; s L™ T (s)x ds.

Taking norm of both sides,

IR(A, A)'x|| =

1 (o)
D ’ f sTle™T(s)xds
EENRINA

1 00
— f Is" e T (s)xllds  since || T(s)|| < Me®*,
n— - Jo

M o0 .
< f 5" Le™ e ||| ds
(n—=D!Jo

M | . |
— ( 1)‘ f sn—le(w—(Re/HtIm/l))s”x”ds since |e—t(lm/l)sl =1,
n— - Jo

< M f Sn—le(w—Re/I)s”x” ds
(n—1! Jo

M N M
< (=D = Ixll. forall x € X.
n—1)! Red - w)’ (Re 1 — w)’

<

Lemma 4.3 Let A be a closed, densely defined operator and M > 1, w > 0 such that
[w, ) C p(A) and ||R(1,A)|| < % for each A > w. The following assertions are satisfied

as A — oo,
a) AR(A, A)x converges to x for each x € X.

b) 1AR(A,A)z = AR(A, A)Az converges to Az for each z € D(A).

Proof

a) From the definition of resolvent of A, R(1, A)(Al — A) = I, which implies

AR, A)x — R, A)Ax = x, forall x € D(A)

and thus [|AR(4, A)x — x|| = ||[R(1, A)Ax|| < %||Ax]] - 0 as A — 0. Let x € X and

g > 0. Since D(A) is dense in X, there exists a € D(A) such that ||x — a|| < €. On the
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other hand, since AR(1,A)a —a — 0 as 4 — oo, there exists A; > 0 such that for all

A > A, ||[AR(A,A)a — a|| < €. Hence,

[|[AR(A,A)x — x|| = [|AR(A,A)x — AR(A,A)a + AR(A,A)a — a + a — x||
< IAR(A, A)(x — @)l + ||[AR(A, A)a — al| + |la — x|
= |[AR(1,A)|le+ e+ ¢

=M +2)e,

which shows AR(1,A)x — x.

b) Since A and A/ — A commute, we obtain

AR A) = A - A = U - A" - AHAQL - A)!
= - A) A - AT - A)7!

= (U - A)'A = R(1, A)A.

Hence, if we take Az = x in the first assertion of lemma, we get

AAR(L, A)z = AR(A, A)Az — Az, for all z € D(A).

Definition 4.2 For all A € C, (Al — A)R(A,A) = AR(A,A) — AR(1,A) = 1. Multiplying
both sides with A, we get ’R(1,A) — AAR(A,A) = A. Letting A, := AAR(A, A), we have

A, = AAR(A, A) = *R(A, A) — Al

The operator A, is called the Yosida Approximation of a generator A for a given A.

Definition 4.3 Let T(t)»0 be a Cy-semigroup. By Lemma 3.1, we already know that, there

exists some M > 1 and w > 0 such that for all t > 0, ||T(®)|| < Me*“'. If it happens to be

21



the case that M can be chosen as 1 and w as 0, then we have ||T(t)|| < 1 and in this case

T(¢) is called a contraction Cy-semigroup .

Theorem 4.1 (Hille-Yosida) Let X be a Banach space and T (-) be a family of operators
on X. T(-) is a contraction Cy-semigroup generated by a linear operator A if and only if
A is closed, densely defined, (0, o) C p(A), and for every 1 > 0, we have ||R(1, A)|| < 1

Moreover if T() is a contraction Cy-semigroup, then C, :={z € C: Rez > 0} C p(A) and

we have |R(1,A)|| € ——= ey A),,, VneNandAeC,.

Proof (=) By Proposition 4.1, if A generates a Cy-semigroup 7°(-) then A must be

closed and densely defined. Then for each x € X and Re A > 0, one has

f e BT (s)xds
0

IR(D)xI| =

< f e M HIT Il s sincelIT (Il < 1,
0

o 1
< f e R xllds = ——|Ixll,
0 Re

which shows R(1) = fo e~ YT (s)ds is absolutely integrable and ||R(2)|| < z=3- By Propo-
sition 4.2 and Corollary 4.1 the result follows.

(&) Let 4 > 0 and A, be the Yosida approximation of A. Note that by definition, A,’s
are bounded operators. Hence we can safely define the family of operators e for ¢ > 0.
Indeed, by Example 3.1 we know that ¢4+ forms a uniformly continuous semigroup. We

tA)

proceed by showing that ¢’ is a contraction semigroup.

e = [l R < -“Z( IR A

]
= ¢ MMIRAAN gince R(A, A) is bounded with L (4.8)

< e Mt =1,

Taking A, u € N, one has

[e5) ©0 t] )
A = A, Z _(A;z)J Z ﬁ(Au)]A/l = ™A, (4.9)
Jj= O j=0 7"

22



Fort; > 0and r € [0, t], using (2.2) leads to

"d
f _(e(t—S)A#eSAAy) ds
0

lle"ty — eyl
ds

A
= f (—A#e(’_s)A”eSA‘y + ™A eAy) ds||  using (4.9)
0

t
— f e(t—s)A,,exA,{ (A/ly _ A,Jy) ds
0

t
< f eS| |Ay — Auyllds  from (4.8)
0

< trllAxy — Al

By Lemma 4.3, Alim A,y = Ay for all y € D(A). Hence A,y is Cauchy which implies ety
is Cauchy as well. Hence it is convergent. Let denote its limit by 7(¢)y, i.e., T(¢)y :=

tAy

lim ey, Since e™" is a contraction for all n, passing to the limit, we obtain || T(t)y|| < |ly||

ivhich shows T'(¢) is a contraction for each < 7, on the dense domain D(A). By bounded
extension property of bounded operators to the closure of their domain, we can extend
T(¢) to the whole space X by preserving its norm. Hence 7'(¢) is a contraction on X.

Let x € X and let £ > 0. Since D(A) is dense in X, Jy € D(A) such that |[x—y|| < .
Since ey — T(t)y, there exists N € N such that ||e"*¥y—T(¢)y|| < &£/2 and also the strong

continuity of e implies that there exists * > 0 such that ||e"Vy — y|| < &/2 for all ¢ < t*.

Then for all ¢ < ¥, we have

IT@x = xl| < ITOx = Tyl + IT@®y = yll + Iy = x|
< IT@IHx = Y+ IT @)y = eyl + lle™y =yl + [lx = yll < 3e.

Consequently, 7'(¢) is strongly continuous for all x € X and r > 0. It is obvious that

T(0) = lim %4 = lim I = I and also T(t + s)x = Alim e x = lim e x for all

A—> 0 A—> 0 A—> 0

t, s > 0. On the other hand,

T ()T (s)x — e x|| < IT(OT(5)x — €T (s)x]| + |[eT(s)x — e1e x|

< (T(5) = DT (s)xll + IT()x — e*x]] — 0

23



as A — oo and s — 0. So, we have T'(¢ + s)x = T(1)T(s)x. By the uniqueness of the limit
T(-) is a contraction semigroup.

Let B be a generator of Cy-semigroup 7'(-). By Property 2.7, it is enough to show
that A C B and p(A)Np(B) # 0. We see that C, C p(A) N p(B) by the first part of the proof
hence p(A) N p(B) # 0. On the other hand, for y € D(A) and ¢ > 0, from (2.2) it follows

that

1 1 1 (M d
—(T )y —y) = lim —(y —y) = i —f—”“d
t( @y -y ALI?M(") y=y) Jim Odse yds

L . . .
= lim — | Aue™yds since ¢**is continuous,
A—>oo [ 0

1 !
=— f Ay ds,
t Jo

as t — 0, Property 2.3 gives y € D(B) and Ay = Byie. A C B. O

Definition 4.4 Let T(-) be a Cy-semigroup with generator A and A € C. We define the

spectral bound of generator A by
S(A) ;== sup{Red: 1€ o(A)} (4.10)

which is less then or equal to wy(A) < oo.

Example 4.1 Let X
with D(A) = Cj(R-)

CoR) ={f €e CR)|f(s) > 0as s > —oo}and A = —dis

{f € C'R) | f, f' € X). We will show that A generates the right

translation semigroup T(-), which is defined by

(THf)s):=f(s—t)for feXandt,s e R_.

We check that A satisfies the assumptions of the Hille-Yosida theorem. To show closedness

of A we take u, belongs to D(A) such that u, converges uniformly to a function u € X and
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Au, converges uniformly to f € X. Then

Un (%) = 1 (0) — fx f(r)dr
0

_ ‘ fo W(r) - f(r)dr| < fo W, f1dr < x|, = flle = 0

as n — oo. We deduce that u,(x) — u,(0) converges pointwise to fox f(rydr. By the
assumption u, — u uniformly, in particular u, — u pointwise. By the uniqueness of the
limit we get u(x) = u(0) + fox f(r)dr € C'R.) and w' = f € X so that u € D(A) and
Au = f.

Obviously C}(R_) C D(A) since every function with compact support vanishes at
infinity. Our next claim is m = X, which gives the density of D(A) in X. By Property
2.4, we have that C.(R_) is dense in Co(R_). We choose f € C.(R_) with suppf C [a,0].
There exists a sequence of polynomials p, converging to f uniformly on [a — 1,0] by the
Weierstrass approximation theorem. Taking a function ¢ € C{(R_) with ¢ = 1 on [a,0]
and suppy C (a — 1,0] we define h, = ¢p, € C-(R_) and moreover h, = p, on [a,0].

Note that

12n = flleo = llepn = fllo < sup [l@(H)pa(t) = Ol + sup [|pa(r) = f(OI = 0

a—-1<t<a a<t<0

as n — oo, and thus Ci(R_) is dense in C.(R_) and C.(R_) is dense in Co(R_). Hence
CI(R.) is dense in Co(R_). Since C\(R_) C D(A). This shows that D(A) = X.

Let f € X and A > 0. In order to show the invertibility of AI — A, one note that
u € D(A) and satisfies Au—Au = f ifand only if ' + Au = f, u € C'(R_), and also u € X.
Let R(A)f(s) := u(s) = f_soo e f(ndn for each s < 0. Then u € CY(R_) (N X satisfies
u + Au = f. We will now show that R(A)f belongs to X. Let € > 0. Then there exists n,

such that |f(n)| < € for each n < n.. For s < n,, we have

IR f] = |f e~ £() dn‘ < f e S\ fapldny  substituting s —1 = w

[Se]

© £
<e& e dw = =
0 A

Therefore, u(s) = R(A)f(s) - 0as s = —oo. Hence u € D(A) and Au — Au = f. So
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A € p(A) and R(1) = R(A,A). If we employ the above formula for the resolvent operator,

we thus get

IRCL A) il < sup f D)l d = (1l f e ey = % where s — 1= w
_ 0

s<0 S

foreach f € X and A > 0, namely, ||R(1,A)|| < % Consequently Theorem 4.1 yields that
A generates a contraction semigroup T (-).

We take f € D(A) and define u(t) = T(t)f for t > 0O to evaluate T(-). By Propo-
sition 3.1, the unique function u € C'(R_, X) and u(t) € D(A) for all t > 0 satisfies the

following equation

u'(t) = Au(t) = ;’—fu(r), t>0 (4.11)

u(0) = f.

Consider v(t) = f(- —t) for t > 0. It is obvious that v(t) € X and thus by the uniqueness
of the solution v(0) = f. Let us show that v is a solution of (4.11) and thus u = v. For

to,t > 0 andt, # t using Property 2.3

ty) — v(t 1 fa
M + f'(-=1| =sup f VvVi(n)ydn + f'(s — t)| substituting — f'(- — t) intoV'(t)
ta -1 ) seR_ ta —t t
-1 la
= sup f Fs—mdn+ f/(s—1)
seR_ |fa — 1 t

<sup sup |f'(s=0)=f(s-mI—0

SER_ |p—t|<ty—t

ast, — tsince f' = Af € Co(R_) and so f’ is uniformly continuous. We conclude that
d%v(t) =—f'(-—=t)fort >0. Themapt — f'(-—1t) € X is continuous and so v € C(l)(R+,X).
By a similar reason, v(t) € C'(R_) and %v(t) = f'(- —t) € X so that v(t) € D(A) for all
t > 0aswell as v holds (4.11). Consequently, T(t)f = v(t) = f(- —t) for each f € D(A).
Since D(A) = X, the equation (4.11) is satisfied for each f € X.

Lastly, we need to show that 0(A) = {z € C| Rez < 0}, namely (0, 00) C p(A). If
Re A < 0, then e € D(A) and satisfies Ae™" = —(e™") = Ae™ so that A € o(A). Since
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IIT]] < 1, s(A) = wo(A) = 0, the claim follows from the closedness of o(A).

Theorem 4.2 (Feller-Miyadera-Phillips) Let A be a linear operator on a Banach space
X andlet M > 1 and w € R. A generates a Cy-semigroup T(-) satisfying ||T(¢)|| < Me”'
for each t > 0 if and only if A is closed, densely defined, (w, ) C p(A) and for every
A € (w, ), we have ||R(1,A)"|| < (/lf’;)n foralln e N.

In addition, if T(-) is a Cy-semigroup, then {1 € C|Red > w} C p(A) and we have

[IR(A, A)| < ﬁfor each A € CwithRe A > w and each n € N,
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CHAPTER 5

CHARACTERIZATION OF GENERATORS AND
LUMER-PHILLIPS THEOREM

The resolvent estimate assumption of the Hille-Yosida theorem contains the usu-
ally unknown resolvent operator and thus it is sometimes difficult to apply in examples.
Therefore it is important to be able to replace the resolvent estimate in Hille-Yosida theo-
rem by some other conditions which are easier to check. For this purpose in this chapter,
we introduce the Lumer-Phillips theorem where the resolvent estimate is replaced by dis-
sipativity and some range condition. This result is extremely useful for a large number
of applications. We first introduce the concept of dissipativity that is essential for appli-
cations of the Lumer-Phillips theorem. For more details, we refer to (Pazy, 2012) and

(Hundertmark et al., 2013).

Definition 5.1 Let X be Banach space and let X* be the dual space of X. The value of
x* € X* at x € X denoted by {x, x*). For all x € X the duality set J(x) C X" is defined as

follows

J() = (x" € X1 (o, x) = (4P = |12 ). (5.1

Note that if X is a Hilbert space with an inner product (-|-) then the duality set J(x) consists

of only one element, namely (:|x).

Definition 5.2 A linear operator A is dissipative if for all x € D(A) there exist x* € J(x)

such that Re{Ax, x*) < 0.

Proposition 5.1 (Schnaubelt, 2011) A linear operator A is dissipative if and only if || A1x —
Ax|| = A||x|| is satisfied for all A > 0 and x € D(A).

Proof Let A be dissipative and x € D(A). So there exists x* € J(x) such that Re(Ax, x*) <
0. For all 1 > 0, we have
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[[Ax — Ax||||x*]] = |[{Ax — Ax, x*)| > Re{Ax — Ax, x*)
> Re{Ax,x") — Re{Ax, x") since Re(Ax,x") <0,

2
> AllxI".

Consequently, ||[Ax — Ax|| > A||x]| as [|x]] = ||x"|].
Conversely suppose that x € D(A) and |[Ax — Ax|| > A||x|| for every 4 > 0. Let us

first prove that A is dissipative if X is a Hilbert space with an inner product (-|-). Then

A < ||Ax — Ax|?> = (Ax — Ax | Ax — Ax) = 2||x|]* = 22(Ax|x) + ||Ax]|]?

< 2||x|I> = 2ARe(Ax|x) + ||Ax].

It follows that Re(Ax|x) < illeII2 and since this is satisfied for all A, we have Re(Ax|x) <
0. For the general case we assume that X is a Banach space and without loss of generality

we take |[x|]| = 1. If we choose z; € J(Ax — Ax) such that [|z3]| = [|[Ax — Ax|| > Al|x]| =1 >0
kI
]

and thus ||z3]| # 0. Setting x’ = for A > 0, we have ||x}|| = 1. Moreover

Z*
A= [|lAx]] < lAx — Axl = </1x — Ax, —”>
Izl

= Re(Ax — Ax, x3)
= ARe(x, x) — Re(Ax, x})

< min{d — Re{Ax, x"), ARe(x, x}) + ||Ax]|}.

So A < A — Re(Ax, x7;) which implies Re{(Ax, x}) < 0 and Re{x,x}) > 1 - %llell as
follows. We consider x’; as a map on the two dimensional linearly independent subspace
S = span{Ax, x} of X. Since x7, is bounded with ||x}|| = 1, there exists a functional z* in
S and a sequence A; such that 4; — oo and le_ — 7" € §* as i — oo since unit ball of
S* is compact. So Re{Ax,z*) < 0 and Re(x,z") > 1. From the Hahn-Banach theorem,

there is a bounded linear functional x* on X* which is extension of z* such that ||x*|| = 1,
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Re{Ax,x*) <0 and Re{x, x*) > 1. Then
1 < Re(x, x*) < [(x, x| < [IxXF|] - lxll = [Ix7[] = 1.

Consequently, 1 = ||x|| = ||x*|| = (x, x*) and x* € J(x). |

Definition 5.3 For a linear operator A, we call A is closable if it has a closed extension.

If A is closable, we define A as its closure as follows
D(A) :={x € X|3x, € D(A),dy € X : lim x, = xand lim Ax, = y} (5.2)

and set Ax := y where y as in the definition of D(A).

Definition 5.4 Let D be a linear subspace of D(A) of a linear operator A. D is called

core for Aif D is dense in D(A) with respect to the graph norm
lIxlla == llxI] + llAxI].

Proposition 5.2 (Hundertmark et al., 2013) Let A generate a Cy-semigroup T(-) on a
Banach space X. Let D C D(A) be a linear which is dense in X and T(t)D C D for all
t > 0. Then D is a core for A.

Proof Take x € D(A). By Proposition 3.1, T(t)x € D(A). T(-)x : R, — [D(A)] is
continuous since for each ¢, s > 0

IT@®x = T(s)xlla = IT(Ox = T(s)xll + AT () x — AT (s)x]|

converges to 0 as t — s. For all & > 0 there exists ¢y € (0, 1] with ||T(f)x — x||s < & for

each r € [0, #/]. Using Property 2.3, we have

1 (7
— f T()xdt—x
Z‘f 0

|
< — f |T()x — x||4df < &.
A Iy Jo
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Since D is dense in D(A), there is a vector y € D such that |[|x — y|]| < &. Let D be the
closure of D in [D(A)] . We define

1 v —
w=— f T(t)ydt € D,
lf 0

which is close to x for the graph norm of A. By the given assumption % fotf T(t)ydteD C

D(A) and so w € D. We setm = sup,cro.1; IT(®Il. Then

1 1f 1 I 1 1f
lx — wlls < ||x - —f T(H)xdr + —f T(H)x - —f T(t)ydt
tr Jo Iy Jo Iy Jo A
1 1 % 1 v
<|lx=-— f T®)xdt| +|— f T()x — —f T(t)ydt by Lemma 4.2,
Iy Jo 4ty Jo Iy Jo A
1 r 1 s
<e+ — f T(H)(x —y)dt|| + — Af T(H)(x—y)de
tr{|Jo Iy 0

1
<e+mlx—-yl+ E ||(T(tf) = Dix _y)”
m—1
Iy

Ss+(m+ )le—y”SKs.

Finally, since w € Din [D(A)], we take a vector s € D with |jw — s|]| < £ and so [|x — s||s <

Ix = wlla + |lw = sll4a < ne. O

Proposition 5.3 For a dissipative operator A, the following properties are satisfied.

i) The operator Al — A is injective for each A > 0 and for y € R(Al — A) we obtain
1AL = A~y < Iy

it) If Aol — A is surjective for some Ay > 0, then A is closed, (0,00) C p(A) and also
[IR(A,A)|| < %for each 1> 0.

iii) Let A be densely defined. Then A is closable and A is also dissipative.
Proof

i) If a linear operator A is dissipative then for x € D(A), we have ||[(A] — A)x|| > Al|x]|.
Assume that (11 — A)x = 0 we then have Al|x]| < ||[(A] — A)x|| = 0, which implies
x = 0 for 4 > 0 and so, A — Al is injective. Moreover, letting y = (1] — A)x in
1AL = A)xl| > Allxl| we thus get [lyll > A[[(A] — A)~'yll.
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ii)

iii)

To show ii) we assume that 4o/ — A is surjective, then the assumption i) gives that

Aol — A is invertible for some Ay > 0 with

1
(I = A)~'yll < 2 Iyl
0

Since (1pI — A) ! exists and bounded for some Ay € C, we have p(A) # 0 and thus
Property 2.5 shows that A is closed. We choose an arbitrary A € (0, 21,). It satisfies
|[A=Ao| < Ap < m and thus A € p(A). Assertion 1) also satisfies ||R(4, A)|| < % for
A € (0,24y). From the above it follows that (0,241,) € p(A) and so (O, 3/10] C p(A)
as A € p(A). Proceeding by induction (0, (%)n /lo] C p(A) for each n € N and thus

(0, 0) C p(A).

Let us suppose that D(A) = X. In order to show the closability of A, we take
X, € D(A) such that x, — 0 and Ax, — yin X as n — oo. From the density
assumption, there exists another sequence y, € D(A) such that y, — y in X as

k — oo. For 4 > 0 and n, k € N, Proposition 5.1 yields
1A% %, + Aye = AAx, = Ayill = 1T = A)(Ax, + yoll = AlAx, + yell.
Taking the limit as n — oo, we have
(AT = A)yi = Il = Allyil-

This inequality is equivalent to |[y, — %Ayk —y|| = |yl for 4 > 0. Letting 4 —
00, |lye = yll = llyxll and it also follows that O > ||y|| as k — oo and thus y = 0.
Consequently, A is closable. To show the dissipativity of A, we take x € D(A). By
means of the definition of a closable operator, there is a sequence w,, € D(A) which
satisfies w, — x and Aw,, — Axin X as n — oo. Since A is dissipative, it follows
that

4 = Ax| = lim [|Aw,, — Aw, || = A 1lim [w,|| = Alll],

and so A is dissipative.
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Theorem 5.1 (Lumer-Phillips)(Lumer, 1961) For a linear, densely defined operator A on

a Banach space X the following assumptions hold.

)

ii)

iii)

Let A be dissipative and R(Aypl — A) be dense in X for some 1y > 0. Then A is

closable and A generates a contraction semigroup.

Let A be dissipative and Ayl — A be surjective for some Ay > 0. Then A generates a

contraction semigroup.

. . . .. . 1
Let A generates a contraction semigroup. Then A is dissipative, ||R(A, A)|| < %~ for

all A € C, and also C, C p(A).

Proof

i)

ii)

Suppose that A is densely defined and dissipative, from Proposition 5.3 we deduce
that A is dissipative. Since R(Aol —A) € R(Agl — A), oI — A has a dense range. For
y € X, we take a sequence x,, € D(A) such that (1g—A)x, := y, = yin X as n — co.

Using the dissipativity of A, we thus get

Aol = Xl < AT = A)(x, — X0
= ”(/len - an) - (/loxm - Z-xm)”

= ”yn - ym”

for each n,m € N. Accordingly, x, — x in X and so Ax, = dox, — Y, — Adgx —y as
n — oo. From the closedness of A, x € D(A) and Ax = Ayx — y. This implies that
R(AyI-A) = X and consequently Ao/ —Ais surjective. By part ii) of Proposition 5.3,
A is closed, (0, ) C p(Z) and ||[R(1,A)|| < % Therefore A generates a contraction

semigroup which follows from Hille-Yosida generation theorem.

Proposition 5.3 implies that A is closed under the surjectivity of 1o/ —A assumption.

By part i), A = A generates a contraction semigroup.
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iii) Assume that A generates a contraction semigroup. We now take x € D(A) and

x* e J(x).
Re{Ax, x*) = lirgl Re(%(T(t)x - x), x")
t—0*
= lirél %(Re(T(t)x, x5y = {(x,x))
t—0*
< lim sup LTI Nt = 1117
as ||x*|| = ||x|| and ||T|| < 1 we obtain Re{Ax, x*) < 0, which gives A is dissipative and also
Theorem 4.1 satisfies the other assumptions. O

Let us first replace the range condition of the Lumer-Phillips theorem by the in-
jectivity of A — A" for some A1 > 0 by means of the next corollary. Since the injectivity
of A — A" is much easier to check then the range conditions in parts a) and b) of the

Lumer-Phillips theorem .

Corollary 5.1 Let A be a densely defined operator on Hilbert space X. If A is dissipative
and A — A is injective for some A > 0 then A generates a contraction semigroup.

Proof By means of the Lumer-Phillips theorem, we only need to show that R(A] — A)
is dense in X. Suppose that y € R(Al — A)*, then for all x € X such that (1] — A)x|y) =
0 = (x(AI — A")y). This implies that for all x € X, (A — A")y = 0. From the injectivity of
Al — A, we get y = 0 and thus R(AI — A)* = {0}. O

Lemma 5.1 (Schnaubelt, 2011) Let T(-) be a Cy-semigroup on a Banach space X. If there
is a ty > 0 such that T (ty) is invertible, then T(-) can be extented to a Cy-group T(t);cr on
X.

Proof Let us first show that 7'(¢) is invertible for each ¢t > 0. There exist M > 1 and
w € R such that ||T()|| < Me*' for each t > 0. We now set K = ||T(t)~'|. It follows for
0<t<ty

T(to) =Tty —-0)T @) =TT (ty —1).

Since T'(ty) is invertible,

1 =T(t) ' Tty — DT (1) = TOT (t)' Tt — 1)
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and thus 7'(¢) has the inverse T'(ty)~' T (t, — f) with
IT (1) T(to = Ol < 1T (o)~ I IT (20 = DIl < K.Me* ™™ := K.
Thus 7-'(¢) is bounded. Moreover, let t = mt, + & for m € N and & € [0, #y). Then
T(1) = T(mty + &) = T(10)"T (),

which has the inverse T(t,) ™ T(£)~!. Therefore T(f) is invertible and we can extend 7'(-)

to R defining T(t) := T(—t)"! fort < 0. For ¢, s > 0,

T(-0T(=s)=T@®'T(s)" = T(HT@) " =T+ " =T(-t-s),
T(-O)T(s) = (T()T(t—$)'T(s) =Tt —s)'T(s)'T(s)=T(t—5s), t>s,

T(-)T ) =T 'TOT(s—t)=T(s—1), s>t

The above definition satisfies the semigroup laws. To show the strong continuity of

T(—1)<0, we take x € X and ¢ € [0, 1¢],
IT(=)x — xl| = |IT(-0)(x = Tl < KillT(@®)x — x| = O

as t — 0. Consequently, 7(f),cr is a Cy-group . O

Definition 5.5 The generator A of a strongly continuous operator group or Cy-group
T(t),cr is defined by

Ax :=lim YT (0)x — x)
t—0

where

D(A) := {x € X : lim {(T(t)x = x) exists in X }.
1=

From the given definition, we denote T.(¢) := T(¢t) and T_(¢) := T(-t) fort > 0

which are Cy-semigroups generated by A and —A, respectively.
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Theorem 5.2 (Stone, 1932) Let A be a linear, densely defined operator on a Hilbert space
X. Then A generates a Cy-group T(-) of unitary operators if and only if A is skew-adjoint.

Proof (&) Assume that A’ = —A. For an element x € D(A) = D(A’), we have a duality

set J(x) = {¢,} with ¢, := (-|x). Then we evaluate
(Ax, ) = (Axlx) = (x|A"x) = —(x]Ax) = —(Ax|x)

and thus Re (Ax|x) = 0. Consequently, A and A’ are dissipative since A’ = —A and
Re (A’x|x) = 0. Since A = (~A) = A”, A and A’ are closed as well A = A and A’ = A’. If
(Al — A)x = 0, then Ax = Ax and from the dissipativity of A, we have

Re (Ax|x) = Re (Ax]x) = ARe (x|x) = Ax||*> = 0

A > 0. Thus A/ — A is injective and so A/ —A’. By Corollary 5.1, A and A’ = —A generates
contraction semigroups 7.,(¢) and 7_(¢) respectively. By Definition 5.5, T'(¢) is a Cy-group
and so T'(¢) is surjective. Since ||T.(®)|| < 1 and ||T~'(¢)|| = [|IT(-1)|| < 1, T(¢) is bounded.

The proof is completed by showing that 7'(¢) is also isometric as follows:
IT@xIl < [Ixll = ITOT (=0)xl| < [ITOIHT @I < T (0)xl]

for each x € X and r € R. Therefore each 7'(¢) is unitary since 7 is surjective and isometric.
(=) Let T(¢) be a unitary Cy-group with generator A. The family 7”(¢) is a contraction

semigroup generated by —A since 77(f) = T(t)~' = T(~t) for t > 0. For each x,y € D(A),

(Aly) = (lim LT (0x = D) = lim (LT @y = ) = (5] - Ap),

which implies —A € A’. Since ||T(¢)|]] = 1 from the isometry property, Theorem 4.2
implies |ReA| > 0 for Cy-groups and o(A) C iR. For a closed and densely defined operator
A, 0(A’) = {1| 1 € 0(A)} C iR and also p(A)(p(A") # 0. By Property 2.7, -A = A’. O
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CHAPTER 6

EXAMPLES INVOLVING LAPLACIAN OPERATOR

Example 6.1 Consider the heat equation

0
—u=Au, xeR" >0,
ot
u(0,x) =uy, xeR" (6.1)

We choose X = L*(R") for & € R" and define its domain
D(A) :={u € X | |£5(01) € X} = H*(R").

Using part c) of Property 2.10 and applying the inverse Fourier transform, we then obtain
Au = —T‘l(lflgﬁ) = Au. Note that Au = }_, Bfu = div(Vu).

Our aim is to show that the operator A is dissipative, self-adjoint and o-(A) C R_.
Remember that H*(R") = ﬁz(R”) by Theorem 2.1, so that Theorem 2.2 and equality (2.7)
lead to for all u,v € D(A)

(Aulv) = f Auvdx = f div(Vu)vdx = —f Vu.Vudx = f uAvdx = (u|Av),
R’l n n RH

R R

which implies that A is symmetric. Moreover,

f Aundx = —f IVul*dx < 0,
R)l RVL

which shows Re(Aulu) = (Aulu) < 0, hence A is dissipative.

To show that the range condition for the Laplacian operator on R" let 1 > 0 and
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take f € X.

m=1
Then it = M{ﬂz which is element of X and so let u = F!( /1+1| R f) in X. From the inverse
Sl >12
Fourier transform,
Au—Au=F! f-# £ fl=r
A+ Ifl2 A+ €3

Therefore, u € H*(R") and AI — A is surjective. Moreover H*(R") is dense in L*(R") and
thus A is densely defined. Lumer-Phillips theorem yields that A generates a contraction
semigroup, and it follows that A is closed and (0, c0) C p(A) by the Hille-Yosida theorem.
Since A is symmetric and p(A) (R # 0, Property 2.6 satisfies 0(A) C R and thus A is
self-adjoint. Finally, (0, c0) C p(A) implies 0(A) CR_.

As a result of the Lumer-Phillips theorem, A generates a Cy-semigroup T (-). Thus
the function u defined by u(t) = T (t)ug for t > 0 is the unique solution of the given diffusion

equation.

For the next example we will need the Lax-Milgram lemma as follows.

Theorem 6.1 (Lax-Milgram Lemma) Let H be a Hilbert space and a : H X H — C be
a sesquilinear form (i.e., u — a(u,v) is linear and v — a(u,v) is antilinear for u,v € H)

which is bounded and strictly accretive, namely there exist C,6 > (0

la(u, v)|| < Cllull |Vl and Re a(u,u) > d|jull? (6.2)

for each u,v € H. Then for all functional v € H* there exists a unique vector w € H such

that a(v, w) = Y(v) for all v € H. The map ¥ — w is bounded and antilinear.

Proof The map ¢, := a(-,v) € H* and |lo,(w)|| = |la(u,v)|| < C ||ul|.||v]| which implies

eyl < Cllv|| for all v € Y. Riesz representation theorem now yields a unique S v satisfying

@Sv) = ¢,(u) = a(u,v)
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for each u € H and ||SV|| = |l¢y]| < CJ|vll. So S is a linear and bounded operator with

constant C. In addition, the strict accretivity assumption now gives

SIMIP < Re (v, v) = Re (v|Sv) < |(vISw)l < C VI ISV

and thus
Ivil < SIISvil forall v € H. (6.3)

From this inequality if ||Sv|| = 0, then we get ||[v|| = 0 so S is injective. Assuming u € H

is orthogonal to the range R(S ), we deduce

0 = (u|Su) = Re (ulSu) = Re a(u, u) > d|ull* (6.4)

so that u = 0. Then R(S)* = {0} is equivalent to R(S) = H. To show the closedness of
R(S), we take a sequence S u, in R(S) such that S u, converges to x. For all € > 0 there is

an N € N such that for all n,m > N then ||Su, — Su,|| < €. Moreover by (6.3)

o
||un - um” < E”SMn - Sum” < Me.

Hence u, is Cauchy and H is complete space then this sequence converges to some el-
ement u € H. Since S is bounded, Su, converges to Su. Then by uniqueness of limit
Su=xand x € R(S). So R(S) is closed, i.e. S is surjective and hence it is invertible with
IS 1| < %. Let ¢ € H*. There exist unique & € H for all v € H such that ¢/(v) = (v|h) due

to Riesz representation theorem. Then

Y(v) = (k) = (VISS™'h) = a(v,S7'h)

for all v € H. Setting w = S~'h, we obtain (v) = a(v,w). Let K : H* — H such that
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Ky = w. Then, we have
Kyl = llwll = IS~ Al < 1S HIHIAIL < 1S~ Il

since ||A|| = ||yl by Riesz representation theorem and this implies that K is bounded. We
set K(AY) = S~'h* such that Ay(v) = (v|h*) then Y(v) = (vl%h*) = (v|h) which implies
h* = Ah. So

KA)=S"'n" =S"ah = a5 'h = 2Ky
which shows K is antilinear. If also @ € H satisfies a(v, @) = ¥(v) for each v € H, then

Olw — & < ¥(w — @, w — @) =0 as in (6.4) which gives the uniqueness of w. O

Example 6.2 Let U be a nonempty open bounded subset in R" and X = L*(U). We the

sesquilinear form as

a(u,v):fVu.V\'/dx (6.5)
U

foru,v e I-OII(U) =: Y. We denote the norm ||f||, = ||fller on LP(U) and ||flli2 = |Ifll. +
IV £ll, on H Y(U). Now, our aim is to construct a self-adjoint, dissipative and invertible

operator A corresponding to the sesquilinear form a. Thanks to Holder’s inequality,

f Vu.Vvdx
U

and by Poincaré’s inequality (2.8),

lor(u, v)| = < f IVu.Vildx = |IVu.Vvlly < [[Vull2[VVll2 < Cllulli 2 V]2
U

1 1
Re a(u,u) = Ref IVul* dx = ||Vul3 = 5||Vu||§ + 5||Vu||§
U

\

1 1
> Enwué + 6§||u||%

2 2 .
m(IVull3 + lull3) where m =min{},5},

\%

2
m”u”lz

Consequently, the form « is bounded and strictly accretive and thus it satisfies the Lax-
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Milgram lemma. We now introduce

DA):={ueY|Af e XVveY:a(u,v)=(fv)}

Au:=—f, wherefis given by D(A).

Let us first prove that f is unique. Assume that for given u, there is another g € X satisfying

the condition of D(A) such that

a(u,v) = (fv) = (gv).

Then (f — g|v) = 0 for all v € Y. This implies that f — g € Y+ = {0} since Y is dense in X.
Hence [ = g. Clearly, A is linear. The map ¢ : v — (v|f) belongs to Y* if f € L*(U) and

leflly = sup (V2] < sup [Vl < 11k (6.6)

[Vl 2<1 Ml 2<1

Lax-Milgram lemma now gives a unique u € Y such that

a(v,u) =) = Wf)r, Yvey,

which means u € D(A) and Au = —f. Hence A is surjective. Moreover taking v = u,

Sllull? , < Re a(u, u) < la(u, )| = o, @) < llglly-llulli 2

by using (6.6), we get
lulli2 < slleflly < clifll, where 5 =c. (6.7)
The inequality (6.6) and (6.7) imply

llullz < llulli2 < clleflly: < cllfllz = cllAulla. (6.8)

If Au = O then inequality (6.8) gives u = 0. So A is injective. Thus, A is bijective. If we take
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x = Au in inequality (6.8), we obtain that A~ is bounded since ||ull, = |A~ x|l, < c||x]],.

LetT : X X X — X X X be a reflection map such that

T(x,y) = (y,x%).

We want to showing that A is closed which means Gr(A) is closed. But this is equivalent
to show that A" is closed since Gr(A) = T Gr(A™"). Note that D(A™") = R(A) := X which
is closed and A™" is bounded. Hence by the closed graph theorem, A" is closed.

There is at least one value A = 0 in p(A) since A is bijective and has a bounded
inverse. Moreover, we know that p(A) is open. Hence there exists r > 0 such that B,(0) C
p(A) in particular for 0 < Ay < r, Ay in p(A), which implies (1ol — A) is surjective.

On the other hand, for u,v € D(A) we compute

(Auv)z = (=fIv)r2 = —a(u,v) = —a(v,u) = (Avlu)r2 = (ulAv);.

Therefore A is symmetric. If we take u = v, strict accretivity property of Lax-Milgram
lemma gives

(Aulu)2 = —a(u, u) < =6llull, <0,

which implies Re(Aulu) < 0. So A is dissipative. Consequently A is densely defined,
dissipative and Aol — A is surjective for some 1y > 0. The Lumer-Phillips theorem im-
plies that A generates a contraction semigroup and by the Hille-Yosida theorem, we have

(0, 00) C p(A). Finally, it is self-adjoint by means of Property 2.6.
Example 6.3 The wave equation with Dirichlet boundary conditions on a open and bounded

domain U C R" is given by

82
ﬁu(t, x) = Au(t, x), xeU, teR,

u(t, x) =0, xedU, teR, (6.9)

u(0, x) = up(x), gtu(O, x)=u(x), xeU.
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The domain of Dirichlet Laplacian D(Ap) contains u € H Y(U) such that there exists
f € LX(U) with
WEFWwawm:fﬁm, (6.10)
U U

and then we define Apu = —f. In order to apply the wave equation (6.9) we choose the

Hilbert space X = H Y(U) x L*(U) endowed with inner product structure by defining

U f||vi
[[ ][ }} = f(VM]V\_/l + Mz\_/z) dx.
u )i\ va U

By means of Poincaré’s estimate (2.8), induced norm is equivalent to the usual norm on

X which is (||u1||%2 + ||u2||§)1/2. On X we define the operator

0 I .
A:( ]mm D(A) = D(Ap) x H'(U).
Ap 0O

The given wave equation can be transformed into the form of Cauchy problem for A
in X. In this example our aim is to show the skew-adjointness of the operator A. Let

(uy, ux)", (vi,v2)T € D(A) and uy, v, € D(Ap). Then we evaluate

A = = f(Vug.Vvl + (Apup)vp) dx
u I\ v2 ADlxtl Vo U

using by Apu; = —fi and equality (6.10)

= f(Vuz.V\'/l —fl\_/'z)dx
U

= f(VI/lQV\_/l - VM].V\_/'Q) dx
U

:fVl/l_ZV\/l dx—fVule_zdx
U U
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and also applying (6.10) and Apv, = —f>

fu_zfz dx—fVule’z dx

U U

—f I/t_QADVId)C—fVMIVV_Q dx
U U

—(f Apviuy dx+fVu1Vv'2 dx)
U U

()R

so that A is skew-symmetric and thus iA is symmetric. Furthermore,
Z3] Z3] Uur U
RelA = Re = Re f(Vuz.Vﬁl + (Apuy)itn) dx,
ur )i\ Us ADM1 175 U

= Re f(VMz.Vﬁl - VM1V17l2) dx=0.
U
We see that Re(Aulu) = 0 for all u € D(A), so that A is dissipative. Let the operator R is

defined by
R 0 Ay
I 0

on X where Ay exists by Example 6.2. We will show that R is bounded.

u Ay
| Ru llx= HR ! :H b2
U X 73]

We will use the sesquilinear form to explain the expression || Ay us ||% ,- If we take

-1 2 241/2
Lo U1 A g 1175 + 1wy 1),
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u=v=win(6.5)and use the Cauchy-Schwarz inequality, then

fll Vw [P dx = [[(Apwiw)ll < Apwlla.[Iwllz. (6.11)

We know that Apw = f and substitute w = A} f into the sesquilinear form (6.5), we get

(fv)re = fV(ABlf)VT/ dx, forall ve hofl(U).
Let us take v = ABI f and using the inequality (6.11),

IVAL I = f IVAL fI? dx < IfIL 1AL flla, by the Poincaré’s Inequality

1
< 5||f||2.||VA,31f||2, some > 0.

It follows that

_ 1
VAL fll2 < Sk (6.12)

From the inequality (6.12), it is easily seen that ||AL! flli2 < cllfll. for some ¢ > 0 and

llu1ll2 < lluylli 2. Consequently,
2 Sl A2 2 2\1/2
(lur]l3 + [|1Ap uallf ) ?<e (lear[7 5 + [lu2ll5) 2,

Namely, ||Rullx < cllullx.

It obvious that RX C D(A) and AR = I, as well as RAu = u for all u € D(A).
Consequently, A is invertible and by the openness of p(A), Al — A is surjective for suffi-
ciently small A > 0. The Lumer-Phillips theorem shows that A generates a contraction
semigroup, and thus A is closed.

In addition, iA is also invertible and so 0 € p(iA). Since p(iA) N R # O then
o(iA) € R, Property (2.6) yields that iA is self-adjoint and thus A is skew-adjoint. By

Stone’s theorem, A generates a unitary Cy-group on X.
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CHAPTER 7

WELLPOSEDNESS AND INHOMOGENEOUS
EVOLUTION EQUATION

We are interested in predicting behavior after t time of a given system. For this
purpose, we require that many solutions for each initial value 1, and also these solutions
must be uniquely determined by uy. Furthermore, we are only able to know the initial
value approximately if very small changes in initial data result in small changes in the
solution. Here we need the concept of wellposedness. For more details, we refer to

(Hundertmark et al., 2013).

Definition 7.1 Let A be a linear, closed operator on a Banach space X. The Cauchy

problem (3.1) is called wellposed if the following conditions are true.
i) A is densely defined.
it) For all uy € D(A) there exists a unique solution u = u(- ; uy) of (3.1).

iii) If elements ug,, uy € D(A) and uy,, — ug in X as n — oo, then u(- ; up,) — u(-; up)
uniformly in compact subsets of R, namely solutions dependence continuously on

initial data.

Theorem 7.1 (Hundertmark et al., 2013) For a closed operator A, A generates a Cy-
semigroup T (-) if and only if Cauchy problem (3.1) is wellposed. Moreover, u = T (-)uy is
the solution of (3.1) for all uy in D(A).

Proof Assume that A is a generator of a Cy-semigroup 7'(-), then T(-)uy is the unique
solution of (3.1) by means of Proposition 3.1 and A is densely defined by Proposition 4.1.
Let uy, converge to 1 in X and let Ve > 0, AN € N such that for all n > N, |lug,, —uol| < .

Also let T'(7) be locally bounded namely, if we have some 7, then there exists M;, > 0 such
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that ||T(0)|lx < M,, for all 7 € [0, ¢,]. We then have,

o2, uo,n) — ult, up)llx = 1T (Ouo,, — T (H)uollx, by linearity of T
= ||T(¢)(uo,, — uo)llx, since T is bounded

< ITOllx-lluwon — uollx

<M, .

and we conclude that the solution depends continously on initial data by using the property
of locally boundedness of T(t).

On the other hand, we now suppose that (3.1) is wellposed problem for closed
operator A and initial condition uy. The operator 7'(¢) : D(A) — X is denoted by T'(¢)x :=
u(t; x) for x € D(A) and ¢t > 0 using condition ii). For x,y € D(A) and A,u € C, the

function v given by

v(t) = Au(t; x) + uu(t;y) = AT ()x + uT(t)y

for t > 0 solves (3.1) with initial value Ax + wy because A is linear. From the uniqueness

of solution, we have
V(1) = u(t; Ax + py) = T(1)(Ax + py).

Hence T'(¢) is linear for all ¢ > 0.

Let us prove that for each #; > 0 there exists a constant ¢ > 0 such that ||T(¢)x|| <
c||x|| for each x € D(A) and each ¢ € [0, t;]. Suppose the assertion to be false. Then there
exists #; > 0 and in particular for all n € N, there is 1, € [0, #;] such that ||T(z,)||x=x =
supy =1 I7(z,)x|l > n. This implies that there exists ||x,|| = 1 such that [|T(z,)x,l| := ¢, > n.
Set z,, := Cinxn € D(A) for every n € N. The initial values z, tend to 0 as n — oo but the
norms ||[u(t,; z)|| = IT(t)zll = illT(t,,)an = 1 do not converge to 0. This contradicts
the assumption iii) in Definition 7.1 and consequently 7'(+) is locally bounded. So we can
extend each single operator T(¢) to a continous linear operator on D(A) = X.

It is obvious that 7(0) = I. We have t — T'(f)x in X is continous on R, for every

x € D(A), D(A) = X and then T'(¢)x is strongly continous at 0. Namely, for all £ > 0O there
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exist 0 > 0 such that 0 < ¢ < ¢ implies ||T(t)x — x|| < &, Vx € D(A). Let y € X then there

is x € D(A) such that ||x — y|| < & and then

IT@y =yl <IT@)y -T@Ox+T(@Ox—x+x—)l
<T@ = 0l + IT(@)x = x| + [lx = yll
<|IT®|.|lx—yl|+&+¢& since T(t) is locally bounded

< (M, +2)e.

We see that T'(¢)x is strongly continous for every x € X. Moreover, ¢, s > 0 and x € D(A).
Then u(s, x) € D(A) so that v(t) := T(H)u(s; x) = u(t; u(s; x)) for t > 0 also corresponds
to the solution of the Cauchy problem with initial condition u(s; x). From the other point
of view u(t + s;x) = T(t + s)x for t > 0 also satisfies the problem. Since solutions are
unique, we obtain 7'(1)T(s)x = T(t + s)x which gives the semigroup law.

Let x € D(A) and B be the generator of 7'(¢). Then Bx := tl_i)r(g %(T(t)x — x) and by
Definition 7.1,

.1 .1
tllrgl ;(T(t)x -X) = }L%l ;(u(t, X) — x) = Ax.

Since T'(t) solves the Cauchy problem, we have A C B which satisfies D(A) € D(B) and
Ax = Bx for all x € D(A). By Definition 5.4 and Proposition 5.2, D(A) is dense in D(B)
with respect to ||x||g = ||x|| +||Bx|| and T'(#)D(A) € D(A) for all ¢ > 0 so that D(A) is a core
of B. For all x € D(B) there exist x,, € D(A) such that

llx, — x|l + [|1Bx, — Bx|| = 0

Ax, = Bx, — Bx. Consequently, the closedness of A requires x € D(A) and A = B. O
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7.1. The Inhomogeneous Equation

In this section we introduce the inhomogeneous Cauchy problem or inhomoge-

neous evolution equation.

u'(t) = Au(t) + g(t), te€(0,T) (7.1)

u(0) = uyp.

Moreover, let the initial value uy € X, g : [0,7) — X be a continuous function and A be

a linear and closed operator.

Definition 7.2 We call a function u : [0, T) — X is a solution of the equation (7.1) if u is
continuously differentiable on (0,T), u(t) € D(A) for every t € [0,T) and (7.1) is satisfied
on (0, 7).

From the definition uy, € D(A). We notice that a solution of (7.1) belongs to C([0, T'), [D(A)])

and thus u is called classical solution of (7.1).

Proposition 7.1 (Pazy, 2012) Let T(t) be a Cy-semigroup generated by A, uy € D(A)
and g € C([0,T),X). Then the solution of (7.1) is unique and given by the following

Duhamel’s formula

!
u(t) = T(Hug + f T(t—s)g(s)ds, te[0,T]. (7.2)

0
Proof We assume that (0,7) C R,, ¢ € (0,7) and u is the solution of (7.1). Then we set
w(s) = T(t — s)u(s), for 0 < s < ¢ that is the solution of (7.1) at time ¢ — s for initial value

u(s) equals to w(s). Then w is continuously differentiable with derivative
W'(s) =T — s)u'(s) — T(t — s)Au(s)

=T — s)(Au(s) + g(s)) — T(t — s)Au(s)

=T(t— 5)g(s).
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If g € L'((0, T), X) namely fot llg()llx ds exists, then

fo IT(z = 5)g(s)llxds < fo 1T = 9llxllg)llx ds < Tt - S)fo l1g(s)llx ds

since 7'(+) is exponentially bounded and we see that 7'(r—s)g(s) is integrable by integrating

f T(t— s)g(s)ds = f W' (5)ds = w(t) — w(0),
0 0
= T(0)u(?) — T(®)u(0),

= u(t) — T(t)up.
Consequently, we obtain

u(t) = T(Hug + f T(t—s)g(s)ds, te€[0,T].
0

Definition 7.3 Let T(t) be a Cy-semigroup generated by A, uy € X and g € C([0, T1], X).
The function u € C([0, T], X) is called mild solution if it holds

u(t) = T(Huy + f T(t—s)g(s)yds, tel0,T].
0

We conclude that every solution of inhomogeneous Cauchy problem is mild solu-
tion from Proposition 7.1 and Definition 7.3. But the converse is not always satisfied as

the following example shows.

Example 7.1 Let X = Cy(R), A be a derivative operator with D(A) = C(l)(R) and let ¢ be
any non-differentiable function. The given A generates a Cy-group T(-) which is defined
the left translation group T(t)h = h(- + t). We have T(t)p = ¢(- +t) ¢ D(A) since ¢ is not
differentiable.

Let g(s) = T(s)p for s € R. The function g : R — X is continuous and the mild solution
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of (7.1) with uy = 0 can be find by means of Duhamel’s formula. That is

u(t) = T(Huy + f T(t—s)T(s)pds
0

!
= f T(t)pds =tT(t)e, teR.
0

Hence u(t) is not solution of (7.1) as u(t) ¢ D(A) fort # 0.

It follows easily that continuity of the function g is not enough to ensure the exis-

tence of solutions even though uy = u(0) € D(A).

51



CHAPTER 8

CONCLUSION

We studied the linear evolution equation (Cauchy problem). We showed that find-
ing a solution to a Cauchy problem is equivalent to find a family of evolution operators
T (¢) which are strongly continuous. We proved several theorems which characterize the
existence of Cp-semigroup of a Cauchy problem. Then we applied these theorems to

specific problems such as heat and wave equation.
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