Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/10413
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÖzışık Başkurt, Didem-
dc.contributor.authorBaştanlar, Yalın-
dc.contributor.authorYardımcı Çetin, Yasemin-
dc.date.accessioned2021-01-24T18:43:07Z-
dc.date.available2021-01-24T18:43:07Z-
dc.date.issued2020-
dc.identifier.issn1751-9632-
dc.identifier.issn1751-9640-
dc.identifier.urihttps://doi.org/10.1049/iet-cvi.2019.0784-
dc.identifier.urihttps://hdl.handle.net/11147/10413-
dc.description.abstractHyperspectral imaging systems provide dense spectral information on the scene under investigation by collecting data from a high number of contiguous bands of the electromagnetic spectrum. The low spatial resolutions of these sensors frequently give rise to the mixing problem in remote sensing applications. Several unmixing approaches are developed in order to handle the challenging mixing problem on perspective images. On the other hand, omnidirectional imaging systems provide a 360-degree field of view in a single image at the expense of lower spatial resolution. In this study, we propose a novel imaging system which integrates hyperspectral cameras with mirrors so on to yield catadioptric omnidirectional imaging systems to benefit from the advantages of both modes. Catadioptric images, incorporating a camera with a reflecting device, introduce radial warping depending on the structure of the mirror used in the system. This warping causes a non-uniformity in the spatial resolution which further complicates the unmixing problem. In this context, a novel spatial-contextual unmixing algorithm specifically for the large field of view of the hyperspectral imaging system is developed. The proposed algorithm is evaluated on various real-world and simulated cases. The experimental results show that the proposed approach outperforms compared methods.en_US
dc.language.isoenen_US
dc.publisherInstitution of Engineering and Technologyen_US
dc.relation.ispartofIET Computer Visionen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleCatadioptric hyperspectral imaging, an unmixing approachen_US
dc.typeArticleen_US
dc.institutionauthorBaştanlar, Yalın-
dc.departmentİzmir Institute of Technology. Computer Engineeringen_US
dc.identifier.volume14en_US
dc.identifier.issue7en_US
dc.identifier.startpage493en_US
dc.identifier.endpage504en_US
dc.identifier.wosWOS:000598689800010en_US
dc.identifier.scopus2-s2.0-85096114696en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1049/iet-cvi.2019.0784-
dc.relation.doi10.1049/iet-cvi.2019.0784en_US
dc.coverage.doi10.1049/iet-cvi.2019.0784en_US
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ3-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:Computer Engineering / Bilgisayar Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
IET Computer Vision-2020.pdf2.21 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

3
checked on Nov 9, 2024

Page view(s)

69,234
checked on Nov 18, 2024

Download(s)

134
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.