Please use this identifier to cite or link to this item:
Title: Estimating spatiotemporal focus of documents using entropy with PMI
Authors: Yaşar, Damla
Tekir, Selma
Keywords: Bilgisayar Bilimleri, Yapay Zeka
Bilgisayar Bilimleri, Sibernitik
Bilgisayar Bilimleri, Donanım ve Mimari
Bilgisayar Bilimleri, Bilgi Sistemleri
Bilgisayar Bilimleri, Yazılım Mühendisliği
Bilgisayar Bilimleri, Teori ve Metotlar
Mühendislik, Elektrik ve Elektronik
Issue Date: 2020
Publisher: Türkiye Klinikleri Journal of Medical Sciences
Abstract: Many text documents are spatiotemporal in nature, i.e. contents of a document can be mapped to a specific time period or location. For example, a news article about the French Revolution can be mapped to year 1789 as time and France as place. Identifying this time period and location associated with the document can be useful for various downstream applications such as document reasoning or spatiotemporal information retrieval. In this paper, temporal entropy with pointwise mutual information (PMI) is proposed to estimate the temporal focus of a document. PMI is used to measure the association of words with time expressions. Moreover, a word’s temporal entropy is considered as a weight to its association with a time point and a single time point with the highest overall score is chosen as the focus time of a document. The proposed method is generic in the sense that it can also be applied for spatial focus estimation of documents. In the case of spatial entropy with PMI, PMI is used to calculate the association between words and place entities. The effectiveness of our proposed methods for spatiotemporal focus estimation is evaluated on diverse datasets of text documents. The experimental evaluation confirms the superiority of our proposed temporal and spatial focus estimation methods.
ISSN: 1300-0632
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
TR Dizin İndeksli Yayınlar / TR Dizin Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record

CORE Recommender

Page view(s)

checked on Nov 30, 2021

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.