Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Modeling of an Activated Sludge Process for Effluent Prediction—a Comparative Study Using Anfis and Glm Regression

dc.contributor.author Araromi, Dauda Olurotimi
dc.contributor.author Majekodunmi, Olukayode Titus
dc.contributor.author Adeniran, Jamiu Adetayo
dc.contributor.author Salawudeen, Taofeeq Olalekan
dc.coverage.doi 10.1007/s10661-018-6878-x
dc.date.accessioned 2020-01-27T11:43:53Z
dc.date.available 2020-01-27T11:43:53Z
dc.date.issued 2018-09
dc.description.abstract In this paper, nonlinear system identification of the activated sludge process in an industrial wastewater treatment plant was completed using adaptive neuro-fuzzy inference system (ANFIS) and generalized linear model (GLM) regression. Predictive models of the effluent chemical and 5-day biochemical oxygen demands were developed from measured past inputs and outputs. From a set of candidates, least absolute shrinkage and selection operator (LASSO), and a fuzzy brute-force search were utilized in selecting the best combination of regressors for the GLMs and ANFIS models respectively. Root mean square error (RMSE) and Pearson’s correlation coefficient (R-value) served as metrics in assessing the predicting performance of the models. Contrasted with the GLM predictions, the obtained modeling results show that the ANFIS models provide better predictions of the studied effluent variables. The results of the empirical search for the dominant regressors indicate the models have an enormous potential in the estimation of the time lag before a desired effluent quality can be realized, and preempting process disturbances. Hence, the models can be used in developing a software tool that will facilitate the effective management of the treatment operation. en_US
dc.identifier.citation Araromi, D. O., Majekodunmi, O. T., Adeniran, J. A., and Salawudeen, T. O. (2018). Modeling of an activated sludge process for effluent prediction—a comparative study using ANFIS and GLM regression. Environmental Monitoring and Assessment, 190(9). doi:10.1007/s10661-018-6878-x en_US
dc.identifier.doi 10.1007/s10661-018-6878-x
dc.identifier.issn 0167-6369
dc.identifier.issn 0167-6369
dc.identifier.scopus 2-s2.0-85050932333
dc.identifier.uri https://doi.org/10.1007/s10661-018-6878-x
dc.identifier.uri https://hdl.handle.net/11147/7629
dc.language.iso eng en_US
dc.publisher Springer Verlag en_US
dc.relation.doi 10.1007/s10661-018-6878-x en_US
dc.relation.ispartof Environmental Monitoring and Assessment en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Fuzzy exhaustive search en_US
dc.subject ANFIS en_US
dc.subject GLM regression en_US
dc.subject LASSO regularization en_US
dc.subject Predictive models en_US
dc.subject Wastewater treatment process en_US
dc.title Modeling of an Activated Sludge Process for Effluent Prediction—a Comparative Study Using Anfis and Glm Regression en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Majekodunmi, Olukayode Titus
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department İzmir Institute of Technology. Chemical Engineering en_US
gdc.description.issue 9 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 190 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W2885085695
gdc.identifier.pmid 30069797
gdc.identifier.wos WOS:000440629500001
gdc.openalex.fwci 1.412
gdc.openalex.normalizedpercentile 0.9
gdc.opencitations.count 21
gdc.scopus.citedcount 29
gdc.wos.citedcount 19

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Araromi2018_Article.pdf
Size:
1.21 MB
Format:
Adobe Portable Document Format
Description:
Makale (Article)

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: