Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Performance Indices of Soft Computing Models To Predict the Heat Load of Buildings in Terms of Architectural Indicators

dc.contributor.author Turhan, Cihan
dc.contributor.author Kazanasmaz, Zehra Tuğçe
dc.contributor.author Gökçen Akkurt, Gülden
dc.contributor.other 02.02. Department of Architecture
dc.contributor.other 03.10. Department of Mechanical Engineering
dc.contributor.other 03.06. Department of Energy Systems Engineering
dc.contributor.other 03. Faculty of Engineering
dc.contributor.other 01. Izmir Institute of Technology
dc.contributor.other 02. Faculty of Architecture
dc.coverage.doi 10.18186/journal-of-thermal-engineering.330180
dc.date.accessioned 2018-01-15T11:39:36Z
dc.date.available 2018-01-15T11:39:36Z
dc.date.issued 2017-08
dc.description.abstract This study estimates the heat load of buildings in Izmir/Turkey by three soft computing (SC) methods; Artificial Neural Networks (ANNs), Fuzzy Logic (FL) and Adaptive Neuro-based Fuzzy Inference System (ANFIS) and compares their prediction indices. Obtaining knowledge about what the heat load of buildings would be in architectural design stage is necessary to forecast the building performance and take precautions against any possible failure. The best accuracy and prediction power of novel soft computing techniques would assist the practical way of this process. For this purpose, four inputs, namely, wall overall heat transfer coefficient, building area/ volume ratio, total external surface area and total window area/total external surface area ratio were employed in each model of this study. The predicted heat load is evaluated comparatively using simulation outputs. The ANN model estimated the heat load of the case apartments with a rate of 97.7% and the MAPE of 5.06%; while these ratios are 98.6% and 3.56% in Mamdani fuzzy inference systems (FL); 99.0% and 2.43% in ANFIS. When these values were compared, it was found that the ANFIS model has become the best learning technique among the others and can be applicable in building energy performance studies. en_US
dc.description.sponsorship Scientific and Technological Research Council of Turkey (TUBITAK -- 109M450), en_US
dc.identifier.citation Turhan, C., Kazanasmaz, T., and Gökçen Akkurt, G. (2017). Performance indices of soft computing models to predict the heat load of buildings in terms of architectural indicators. Journal of Thermal Engineering, 3(4), 1358-1374. doi:10.18186/journal-of-thermal-engineering.330180 en_US
dc.identifier.doi 10.18186/journal-of-thermal-engineering.330180
dc.identifier.issn 2148-7847
dc.identifier.issn 2148-7847
dc.identifier.scopus 2-s2.0-85034989833
dc.identifier.uri http://doi.org/10.18186/journal-of-thermal-engineering.330180
dc.identifier.uri http://hdl.handle.net/11147/6686
dc.language.iso en en_US
dc.publisher Yıldız Teknik Üniversitesi en_US
dc.relation info:eu-repo/grantAgreement/TUBITAK/MAG/109M450 en_US
dc.relation.ispartof Journal of Thermal Engineering en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject ANFIS en_US
dc.subject Fuzzy logic en_US
dc.subject Heat load en_US
dc.subject Residential buildings en_US
dc.subject Soft computing methods en_US
dc.title Performance Indices of Soft Computing Models To Predict the Heat Load of Buildings in Terms of Architectural Indicators en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id TR103337
gdc.author.id TR28229
gdc.author.id TR130569
gdc.author.institutional Turhan, Cihan
gdc.author.institutional Gökçen Akkurt, Gülden
gdc.author.institutional Gökçen Akkurt, Gülden
gdc.author.institutional Kazanasmaz, Zehra Tuğçe
gdc.author.institutional Turhan, Cihan
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department İzmir Institute of Technology. Mechanical Engineering en_US
gdc.description.department İzmir Institute of Technology. Energy Systems Engineering en_US
gdc.description.department İzmir Institute of Technology. Architecture en_US
gdc.description.department İzmir Institute of Technology. Mechanical Engineering en_US
gdc.description.endpage 1374 en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 1358 en_US
gdc.description.volume 3 en_US
gdc.identifier.openalex W3135269251
gdc.identifier.wos WOS:000407804200006
gdc.openalex.fwci 2.162
gdc.openalex.normalizedpercentile 0.87
gdc.opencitations.count 32
gdc.scopus.citedcount 8
gdc.wos.citedcount 7
relation.isAuthorOfPublication d605b2bf-7a5c-4ce9-bf36-ce1edee16d36
relation.isAuthorOfPublication 199bb65d-4746-4276-bc6a-a4648af67d89
relation.isAuthorOfPublication 6eed5317-6dd4-4365-a335-6cd0b3256e45
relation.isAuthorOfPublication.latestForDiscovery d605b2bf-7a5c-4ce9-bf36-ce1edee16d36
relation.isOrgUnitOfPublication 9af2b05f-28ac-4026-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4022-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4017-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4004-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4003-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4006-8abe-a4dfe194da5e
relation.isOrgUnitOfPublication.latestForDiscovery 9af2b05f-28ac-4026-8abe-a4dfe192da5e

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
6686.pdf
Size:
1.11 MB
Format:
Adobe Portable Document Format
Description:
Makale

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: